Алгебра phys 2 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 68: | Строка 68: | ||
<h5>16.1 Векторные поля, ковекторные поля, тензорные поля</h5> | <h5>16.1 Векторные поля, ковекторные поля, тензорные поля</h5> | ||
<ul><li>Касательное и кокасательное расслоения: <math>\mathrm TM=\!\bigsqcup_{m\in M}\!\mathrm T_mM</math> и <math>\mathrm T^*M=\!\bigsqcup_{m\in M}\!\mathrm T^*_mM</math>. Структура многообр.-я на <math>\mathrm TM</math> и <math>\mathrm T^*M</math>; отобр.-е проекции на <math>M</math>: <math>\mathrm{pr}_M</math>. | <ul><li>Касательное и кокасательное расслоения: <math>\mathrm TM=\!\bigsqcup_{m\in M}\!\mathrm T_mM</math> и <math>\mathrm T^*M=\!\bigsqcup_{m\in M}\!\mathrm T^*_mM</math>. Структура многообр.-я на <math>\mathrm TM</math> и <math>\mathrm T^*M</math>; отобр.-е проекции на <math>M</math>: <math>\mathrm{pr}_M</math>. | ||
− | <li> | + | <li>Пр.-ва векторн. полей и ковект. полей (<math>1</math>-форм): <math>\mathrm{Vect}(M)=\{v\in\mathrm C^\infty\!(M,\mathrm TM)\mid\mathrm{pr}_M\!\circ v=\mathrm{id}_M\}</math> и <math>\Omega^1(M)=\{\lambda\in\mathrm C^\infty\!(M,\mathrm T^*M)\mid\mathrm{pr}_M\!\circ\lambda=\mathrm{id}_M\}</math>. |
− | <li> | + | <li>Векторные поля <math>\frac\partial{\partial x^i}{}</math>, <math>1</math>-формы <math>\mathrm dx^j{}</math> и <math>\mathrm df</math>. Умнож.-е на функцию в <math>\mathrm{Vect}(M)</math> и <math>\Omega^1(M)</math>. Действие <math>1</math>-формы на векторн. поле: <math>(\lambda(v))(m)=(\lambda(m))(v(m))</math>. |
<li>Векторное поле и ковекторное поле в коорд.: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math> и <math>\lambda=\sum_{j=1}^n\lambda_j\,\mathrm dx^j</math>. Преобр.-я при замене: <math>v^\tilde i=\sum_{k=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^k}\!\circ\xi\Bigr)\,v^k</math> и <math>\lambda_\tilde j=\sum_{l=1}^n\Bigl(\frac{\partial x^l}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\,\lambda_l</math>. | <li>Векторное поле и ковекторное поле в коорд.: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math> и <math>\lambda=\sum_{j=1}^n\lambda_j\,\mathrm dx^j</math>. Преобр.-я при замене: <math>v^\tilde i=\sum_{k=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^k}\!\circ\xi\Bigr)\,v^k</math> и <math>\lambda_\tilde j=\sum_{l=1}^n\Bigl(\frac{\partial x^l}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\,\lambda_l</math>. | ||
− | |||
− | |||
<li>Расслоение тензоров типа <math>(p,q)</math>: <math>\mathcal T^p_{\;q}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathcal T^p_{\;q}(\mathrm T_mM)</math>. Пр.-во тензорн. полей типа <math>(p,q)</math>: <math>\mathrm{Tens}^p_q(M)=\{T\in\mathrm C^\infty\!(M,\mathcal T^p_{\;q}\mathrm TM)\mid\mathrm{pr}_M\!\circ T=\mathrm{id}_M\}</math>. | <li>Расслоение тензоров типа <math>(p,q)</math>: <math>\mathcal T^p_{\;q}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathcal T^p_{\;q}(\mathrm T_mM)</math>. Пр.-во тензорн. полей типа <math>(p,q)</math>: <math>\mathrm{Tens}^p_q(M)=\{T\in\mathrm C^\infty\!(M,\mathcal T^p_{\;q}\mathrm TM)\mid\mathrm{pr}_M\!\circ T=\mathrm{id}_M\}</math>. | ||
− | <li>В коорд. | + | <li>В коорд.: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Пример: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math> — поле форм от <math>k</math> перем.-х. |
− | <li>Преобр.-е координат | + | <li>Преобр.-е координат тензорн. поля при замене координат на <math>M</math>: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!\Bigl(\frac{\partial x^\tilde{i_1}}{\partial x^{k_1}}\!\circ\xi\Bigr)\ldots\Bigl(\frac{\partial x^\tilde{i_p}}{\partial x^{k_p}}\!\circ\xi\Bigr)\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_q}}{\partial x^\tilde{j_q}}\!\circ\tilde\xi\Bigr)\,T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}</math>. |
+ | <li>Произв.-я Ли функции вдоль вект. поля: <math>\mathcal L_v(f)=\mathrm df(v)</math>. Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: <math>[v,w]^i=\sum_{j=1}^n\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)</math>. | ||
+ | <p><u>Теорема об алгебре Ли векторных полей.</u> <i>Пусть <math>M</math> — многообразие; тогда<br>(1) для любых <math>v\in\mathrm{Vect}(M)</math> имеем следующий факт: <math>\mathcal L_v</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M)</math> (то есть <math>\mathcal L_v\!\in\mathrm{Der}(\mathrm C^\infty\!(M))</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm C^\infty\!(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный линейный оператор, и его образ — подалгебра алгебры Ли <math>\,\mathrm{Der}(\mathrm C^\infty\!(M))</math>; определим<br>на векторном пространстве <math>\,\mathrm{Vect}(M)</math> бинарную операцию <math>[\,,]</math> так, чтобы этот инъективный линейный оператор стал гомоморфизмом алгебр Ли<br>(то есть <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_{[v,w]}=[\mathcal L_v,\mathcal L_w]\bigr)</math>); тогда <math>\,\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>.</i></p></ul> | ||
<h5>16.2 Дифференциальные формы, ориентация многообразия</h5> | <h5>16.2 Дифференциальные формы, ориентация многообразия</h5> | ||
− | <ul><li>Пр.-во дифференц. <math>k</math>-форм: <math>\Omega^k(M)=\{\omega\in\mathrm{Tens}_k(M)\mid\forall\,m\in M\;\bigl(\omega(m)\in\mathrm{AMulti}_k(\mathrm T_mM)\bigr)\}</math>. В коорд. | + | <ul><li>Пр.-во дифференц. <math>k</math>-форм: <math>\Omega^k(M)=\{\omega\in\mathrm{Tens}_k(M)\mid\forall\,m\in M\;\bigl(\omega(m)\in\mathrm{AMulti}_k(\mathrm T_mM)\bigr)\}</math>. В коорд.: <math>\omega=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}</math>. |
<li>Алгебра дифференциальных форм: <math>\Omega(M)=\bigoplus_{k=0}^n\Omega^k(M)</math> — ассоциат. суперкоммут. <math>\mathbb R</math>-алгебра с <math>1</math>. Теорема о внешнем дифференциале (эскиз доказ.-ва). | <li>Алгебра дифференциальных форм: <math>\Omega(M)=\bigoplus_{k=0}^n\Omega^k(M)</math> — ассоциат. суперкоммут. <math>\mathbb R</math>-алгебра с <math>1</math>. Теорема о внешнем дифференциале (эскиз доказ.-ва). | ||
<p><u>Теорема о внешнем дифференциале.</u> <i>Пусть <math>M</math> — многообразие; тогда существует единственный такой линейный оператор <math>\mathrm d\in\mathrm{End}(\Omega(M))</math>, что<br><math>\forall\,k,k'\!\in\mathbb N_0,\,\omega\in\Omega^k(M),\,\omega'\!\in\Omega^{k'}\!(M)\;\bigl(\mathrm d(\omega\wedge\omega')=\mathrm d\omega\wedge\omega'+(-1)^k\,\omega\wedge\mathrm d\omega'\bigr)</math> (то есть <math>\mathrm d</math> — супердифференцирование алгебры <math>\,\Omega(M)</math>), а также<br>для любых <math>f\in\mathrm C^\infty\!(M)</math> выполнено <math>\mathrm d(f)=\mathrm df</math> и <math>\mathrm d(\mathrm df)=0</math> (напоминание: <math>\forall\,m\in M,\,\gamma\in\mathrm{Curv}_m(M)\;\bigl((\mathrm df(m))(\dot\gamma(0))=(f\circ\gamma)\!\dot{\phantom i}\!(0)\bigr)</math>).</i></p> | <p><u>Теорема о внешнем дифференциале.</u> <i>Пусть <math>M</math> — многообразие; тогда существует единственный такой линейный оператор <math>\mathrm d\in\mathrm{End}(\Omega(M))</math>, что<br><math>\forall\,k,k'\!\in\mathbb N_0,\,\omega\in\Omega^k(M),\,\omega'\!\in\Omega^{k'}\!(M)\;\bigl(\mathrm d(\omega\wedge\omega')=\mathrm d\omega\wedge\omega'+(-1)^k\,\omega\wedge\mathrm d\omega'\bigr)</math> (то есть <math>\mathrm d</math> — супердифференцирование алгебры <math>\,\Omega(M)</math>), а также<br>для любых <math>f\in\mathrm C^\infty\!(M)</math> выполнено <math>\mathrm d(f)=\mathrm df</math> и <math>\mathrm d(\mathrm df)=0</math> (напоминание: <math>\forall\,m\in M,\,\gamma\in\mathrm{Curv}_m(M)\;\bigl((\mathrm df(m))(\dot\gamma(0))=(f\circ\gamma)\!\dot{\phantom i}\!(0)\bigr)</math>).</i></p> |
Версия 03:00, 16 сентября 2018
Подробный план второй половины третьего семестра курса алгебры
|
14 Тензорные произведения векторных пространств
14.1 Определения и конструкции, связанные с тензорами
- Тензорное произведение пространств: , где и — подпространство полилинеаризации.
- Разложимый тензор: . Ранг тензора : — минимум среди всех таких , что равен сумме разл. тензоров.
- Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
и отображение — полилинейный оператор. - Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
существ. единств. такой , что
(и, значит, отображение — изоморфизм векторных пространств). - Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
пространства , а также, если , то . - Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
- Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
и . - Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
(1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
(2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2 Тензоры типа и тензорная алгебра
- Пространство тензоров типа над : . Примеры: , , , , .
- Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
- Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) — изоморфизм векторных пространств;
(2) — изоморфизм векторных пространств;
(3) — изоморфизм вект. простр.-в. - Тензор типа в координатах: . Примеры: , , .
- Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
- Преобразование при замене базиса: . Примеры: , .
- Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
- Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
— базис алгебры , и для любых его элементов и выполнено
, а также — алгебра многочленов от своб. перем.-х.
14.3 Операции над тензорами
- Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
- Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
- Свертка по -й и -й позициям: .
- Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.
Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых , и выполнено , , и ;
(2) для любых и выполнено и . - Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
(1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
(2) под действием канонического изоморфизма тензор переходит в форму ;
(3) для любых выполнено . - Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
- Опускание индекса с -й позиции в коорд. (применение операции выражается в располож.-и индексов): .
- Подъем индекса с -й позиции в коорд. (применение операции выражается в расположении индексов): .
15 Симметрические и внешние степени векторных пространств
15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами
- Симметрическая степень: . Внешняя степень: .
- Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
и ; обозначим через канонический изоморфизм ; тогда
(1) (напоминание: и );
(2) и (далее пространства и отождествляются);
(3) и (далее пространства и отождествляются). - Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.
Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) для любых выполнено и для любых выполнено ;
(3) и , а также и (и, значит, — проектор на и — проектор на ). - Симметрич. и внешнее произв.-е векторов: и . Пример: .
- Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
(1) и отображение — симметричный полилинейный оператор;
(2) и отображение — антисимметричный полилинейный оператор. - Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
(1) для любых существует единственный такой , что ;
(2) для любых существует единственный такой , что . - Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
и ; тогда
(1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(3) и . - Симметрич. и внешняя степени лин. оператора (): и .
15.2 Симметрическая алгебра и внешняя алгебра
- Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
- Симметриз.-я и альтерн.-е в коорд.: и .
- Симметрическое и внешнее произв. в коорд.: и .
- Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
, и , , ; тогда
(1) и ;
(2) и ;
(3) и ;
(4) и ;
(5) и . - Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
- Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
- Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
(1) — базис алгебры , и для любых его элементов и
выполнено , где числа суть числа , упорядоченные по неубыванию;
(2) — базис алгебры , и для любых его элементов и
выполнено , где суть , упоряд. по неубыванию;
(3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3 Операции над внешними формами
- Теорема о внешнем произведении антисимметричных полилинейных форм. Пусть — поле, , — векторное пространство над полем ,
, и ; тогда
(1) если , то для любых выполнено ;
(2) для любых выполнено . - Векторное произведение в коорд.-х: . Теорема о векторном произведении.
- Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: . Пример: .
- Пример: . Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении.
Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
(1) для любых и выполнено ;
(2) для любых и выполнено , где
образуют дополнительный набор к (то есть и ); в частности, .Теорема об операторе Ходжа и внешнем произведении. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
(1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
(2) для любых выполнено , где (в координатах );
(3) для любых выполнено ;
(4) если , то для любых выполнено .
16 Многообразия (часть 2)
16.1 Векторные поля, ковекторные поля, тензорные поля
- Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
- Пр.-ва векторн. полей и ковект. полей (-форм): и .
- Векторные поля , -формы и . Умнож.-е на функцию в и . Действие -формы на векторн. поле: .
- Векторное поле и ковекторное поле в коорд.: и . Преобр.-я при замене: и .
- Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
- В коорд.: . Пример: — поле форм от перем.-х.
- Преобр.-е координат тензорн. поля при замене координат на : .
- Произв.-я Ли функции вдоль вект. поля: . Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: .
Теорема об алгебре Ли векторных полей. Пусть — многообразие; тогда
(1) для любых имеем следующий факт: — дифференцирование алгебры (то есть );
(2) отображение — инъективный линейный оператор, и его образ — подалгебра алгебры Ли ; определим
на векторном пространстве бинарную операцию так, чтобы этот инъективный линейный оператор стал гомоморфизмом алгебр Ли
(то есть ); тогда — алгебра Ли относительно операции .
16.2 Дифференциальные формы, ориентация многообразия
- Пр.-во дифференц. -форм: . В коорд.: .
- Алгебра дифференциальных форм: — ассоциат. суперкоммут. -алгебра с . Теорема о внешнем дифференциале (эскиз доказ.-ва).
Теорема о внешнем дифференциале. Пусть — многообразие; тогда существует единственный такой линейный оператор , что
(то есть — супердифференцирование алгебры ), а также
для любых выполнено и (напоминание: ). - Дифференциал в коорд.-х: . Утверждение: . Замкнутая форма: . Точная форма: .
- Ориентация многообразия — такой выбор ориентаций всех пространств , где , что .
- Атлас : ; тогда .
16.3 Римановы и псевдоримановы многообразия (основные определения и примеры)
- Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
- Риманово многообразие — многообразие с положит. определ. метрическим тензором. Примеры: , подмногообразия в , простр.-во Лобачевского .
- Псевдориманово многообр. сигнат. — многообр. с метрич. тензором сигнат. . Канонич. форма объема на псевдориман. многообр. с ориентацией.
- Бемоль, диез и оператор Ходжа на псевдоримановом многообразии с ориент.: , и .
- Градиент функции: ; ротор и дивергенция вект. поля: и ; лапласиан функции: .
- Символы Кристоффеля: . Ковариантная произв.-я (): .
- Длина кривой (): . Условие на геодезическую кривую (с параметризацией длиной дуги): .
- Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .