Алгебра phys 2 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
<ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Алгебра, порожденная лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>. | <ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Алгебра, порожденная лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>. | ||
<li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>. | <li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>. | ||
− | + | <li>Теорема Гамильтона–Кэли. Нильпотентный лин. оператор: <math>\exists\,m\in\mathbb N_0\;\bigl(a^m=0\bigr)</math>. Утверждение: <i>пусть <math>a</math> — нильпот. лин. оператор; тогда <math>\chi_a=x^{\dim V}\!{}</math></i>. | |
− | + | ||
− | <li>Теорема Гамильтона–Кэли. Нильпотентный | + | |
<p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p> | <p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p> | ||
<li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене. | <li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене. | ||
− | <p><u>Теорема о минимальном многочлене.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда | + | <p><u>Теорема о минимальном многочлене.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\mu_a</math> делит <math>\chi_a</math><br>(и, значит, для любых <math>c\in K</math> выполнено <math>\beta(a,c)\le\alpha(a,c)</math>), а также <math>\,\mathrm{Spec}(a)=\{c\in K\mid\mu_a(c)=0\}</math>.</i></p> |
+ | <li><u>Теорема о ядрах многочленов от линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>f\in K[x]</math>, то <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\subseteq\mathrm{Ker}\,f(a)</math> (то есть <math>\mathrm{Ker}\,f(a)</math> — <math>a</math>-инвариантное подпространство);<br>(2) если <math>f,g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\subseteq\mathrm{Ker}\,g(a)</math>;<br>(3) если <math>k\in\mathbb N_0</math>, <math>f_1,\ldots,f_k\in K[x]</math> и многочлены <math>f_1,\ldots,f_k</math> попарно взаимно просты, то <math>\,\mathrm{Ker}\,(f_1\cdot\ldots\cdot f_k)(a)=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math><br>(и, значит, <math>(f_1\cdot\ldots\cdot f_k)(a)=0\;\Leftrightarrow\,V=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math>).</i> | ||
+ | <li>Проектор (идемпотент): <math>a^2=a{}</math> (<math>\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a{}</math>). Отражение: <math>a^2=\mathrm{id}_V{}</math> (<math>\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,(a+\mathrm{id}_V){}</math>) (здесь <math>\mathrm{char}\,K\ne2</math>). | ||
+ | <li>Ряд от лин. оператора <math>a</math> (<math>V</math> — нормир. пр.-во): <math>\sum_{k=0}^\infty f_ka^k{}</math>; достаточное усл.-е сход.-сти (<math>V</math> — банах. пр.-во, <math>a\in\mathrm{End}(V)\cap\mathrm C^0\!(V,V){}</math>): <math>\sum_{k=0}^\infty|f_k|\|a\|^k<\infty{}</math>. | ||
+ | <li>Экспонента от непрерывного линейн. оператора <math>a</math> в банах. пр.-ве: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Пример: <math>\mathrm e^{\Bigl(\begin{smallmatrix}0&-\varphi\\\varphi&0\end{smallmatrix}\Bigr)}\!=\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>. Теорема о свойствах экспоненты. | ||
+ | <p><u>Теорема о свойствах экспоненты.</u><br><i>Пусть <math>V</math> — банахово пр.-во; тогда для любых <math>a,b\in\mathrm{End}(V)\cap\mathrm C^0\!(V,V)</math> выполнено <math>a\circ b=b\circ a\,\Rightarrow\,\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math>, а также <math>\mathrm e^0\!=\mathrm{id}_V\!</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.</i></p></ul> | ||
− | <h5>11.2 Собственные | + | <h5>11.2 Собственные и корневые подпространства линейного оператора</h5> |
<ul><li>Собственные подпространства: <math>V_1(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)</math>; геометрическая кратность: <math>\gamma(a,c)=\dim V_1(a,c)</math>. Лемма о собственных подпространствах. | <ul><li>Собственные подпространства: <math>V_1(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)</math>; геометрическая кратность: <math>\gamma(a,c)=\dim V_1(a,c)</math>. Лемма о собственных подпространствах. | ||
<p><u>Лемма о собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>a\in\mathrm{End}(V)</math>, <math>k\in\mathbb N_0</math>, <math>c_1,\ldots,c_k\in K</math> и<br><math>c_1,\ldots,c_k</math> попарно различны; тогда<br>(1) <math>\mathrm{Ker}\,((x-c_1)\cdot\ldots\cdot(x-c_k))(a)=V_1(a,c_1)\oplus\ldots\oplus V_1(a,c_k)</math>;<br>(2) если <math>C_1\subseteq V_1(a,c_1),\ldots,C_k\subseteq V_1(a,c_k)</math> и <math>C_1,\ldots,C_k</math> — независимые множества, то <math>C_1\cup\ldots\cup C_k</math> — независимое множество;<br>(3) если <math>\dim V<\infty</math>, то для любых <math>c\in K</math> выполнено <math>\gamma(a,c)\le\alpha(a,c)</math>.</i></p> | <p><u>Лемма о собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>a\in\mathrm{End}(V)</math>, <math>k\in\mathbb N_0</math>, <math>c_1,\ldots,c_k\in K</math> и<br><math>c_1,\ldots,c_k</math> попарно различны; тогда<br>(1) <math>\mathrm{Ker}\,((x-c_1)\cdot\ldots\cdot(x-c_k))(a)=V_1(a,c_1)\oplus\ldots\oplus V_1(a,c_k)</math>;<br>(2) если <math>C_1\subseteq V_1(a,c_1),\ldots,C_k\subseteq V_1(a,c_k)</math> и <math>C_1,\ldots,C_k</math> — независимые множества, то <math>C_1\cup\ldots\cup C_k</math> — независимое множество;<br>(3) если <math>\dim V<\infty</math>, то для любых <math>c\in K</math> выполнено <math>\gamma(a,c)\le\alpha(a,c)</math>.</i></p> | ||
<li><u>Теорема о диагонализуемых линейных операторах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>следующие утверждения эквивалентны:<br>(у1) существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e</math> — диагональная матрица;<br>(у2) <math>\mu_a=\!\!\!\prod_{c\in\mathrm{Spec}(a)}\!\!\!(x-c)</math> (то есть многочлен <math>\mu_a</math> раскладывается без кратностей в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math>);<br>(у3) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V_1(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму собственных подпространств линейного оператора <math>a</math>);<br>(у4) <math>\dim V=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!\gamma(a,c)</math>.</i> | <li><u>Теорема о диагонализуемых линейных операторах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>следующие утверждения эквивалентны:<br>(у1) существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e</math> — диагональная матрица;<br>(у2) <math>\mu_a=\!\!\!\prod_{c\in\mathrm{Spec}(a)}\!\!\!(x-c)</math> (то есть многочлен <math>\mu_a</math> раскладывается без кратностей в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math>);<br>(у3) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V_1(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму собственных подпространств линейного оператора <math>a</math>);<br>(у4) <math>\dim V=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!\gamma(a,c)</math>.</i> | ||
<li>Обобщенные собственные подпростр.-ва: <math>V_j(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)^j</math>; относительные геометрич. кратности: <math>\gamma_j(a,c)=\dim V_j(a,c)-\dim V_{j-1}(a,c)</math>. | <li>Обобщенные собственные подпростр.-ва: <math>V_j(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)^j</math>; относительные геометрич. кратности: <math>\gamma_j(a,c)=\dim V_j(a,c)-\dim V_{j-1}(a,c)</math>. | ||
− | <li>Жорданова клетка: <math>\mathrm{jc}_n(c)=c\cdot\mathrm{id}_n+\ | + | <li>Жорданова клетка: <math>\mathrm{jc}_n(c)=c\cdot\mathrm{id}_n+\mathbf e_1^2+\ldots+\mathbf e_{n-1}^n{}</math>. Пример: если <math>a=\mathrm{jc}_n(c)</math>, то <math>\mu_a=\chi_a=(x-c)^n</math> и <math>\forall\,j\in\{0,\ldots,n\}\;\bigl(V_j(a,c)=\langle\mathbf e_1,\ldots,\mathbf e_j\rangle\bigr){}</math>. |
<li><u>Теорема об обобщенных собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>c\in K</math>; тогда<br>(1) для любых <math>j\in\mathbb N_0</math> выполнено <math>V_j(a,c)\subseteq V_{j+1}(a,c)</math> и, если <math>V_j(a,c)=V_{j+1}(a,c)</math>, то <math>V_{j+1}(a,c)=V_{j+2}(a,c)</math>;<br>(2) для любых <math>j\in\mathbb N_0</math> выполнено <math>\beta(a,c)\le j\;\Leftrightarrow\,V_{\beta(a,c)}(a,c)=V_j(a,c)</math>;<br>(3) <math>\{0\}\subset V_1(a,c)\subset\ldots\subset V_{\beta(a,c)-1}(a,c)\subset V_{\beta(a,c)}(a,c)</math> и <math>V_{\beta(a,c)}(a,c)=V_{\beta(a,c)+1}(a,c)=\ldots=V_{\alpha(a,c)}(a,c)=\ldots</math>.</i> | <li><u>Теорема об обобщенных собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>c\in K</math>; тогда<br>(1) для любых <math>j\in\mathbb N_0</math> выполнено <math>V_j(a,c)\subseteq V_{j+1}(a,c)</math> и, если <math>V_j(a,c)=V_{j+1}(a,c)</math>, то <math>V_{j+1}(a,c)=V_{j+2}(a,c)</math>;<br>(2) для любых <math>j\in\mathbb N_0</math> выполнено <math>\beta(a,c)\le j\;\Leftrightarrow\,V_{\beta(a,c)}(a,c)=V_j(a,c)</math>;<br>(3) <math>\{0\}\subset V_1(a,c)\subset\ldots\subset V_{\beta(a,c)-1}(a,c)\subset V_{\beta(a,c)}(a,c)</math> и <math>V_{\beta(a,c)}(a,c)=V_{\beta(a,c)+1}(a,c)=\ldots=V_{\alpha(a,c)}(a,c)=\ldots</math>.</i> | ||
<li>Корневые подпространства: <math>V(a,c)=V_{\beta(a,c)}(a,c)=V_{\alpha(a,c)}(a,c)</math>. Нильпотентные части линейного оператора <math>a</math>: <math>\mathrm{nil}(a,c)=a|_{V(a,c)\to V(a,c)}\!-c\cdot\mathrm{id}_{V(a,c)}</math>. | <li>Корневые подпространства: <math>V(a,c)=V_{\beta(a,c)}(a,c)=V_{\alpha(a,c)}(a,c)</math>. Нильпотентные части линейного оператора <math>a</math>: <math>\mathrm{nil}(a,c)=a|_{V(a,c)\to V(a,c)}\!-c\cdot\mathrm{id}_{V(a,c)}</math>. | ||
Строка 28: | Строка 31: | ||
<p><u>Теорема 1 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math> и <math>E\subseteq V</math>; тогда следующие утверждения эквивалентны:<br>(у1) <math>E</math> — базис пространства <math>V</math> относительно <math>U</math>;<br>(у2) <math>E</math> — независимое множество и <math>V=U\oplus\langle E\rangle</math> (и, значит, если <math>\dim V<\infty</math>, то <math>|E|=\dim V-\dim U</math>);<br>(у3) для любого вектора <math>v\in V</math> существуют единственные такие <math>u\in U</math> и <math>f\in\mathrm{FinFunc}(E,K)</math>, что <math>v=u+\sum_{e\in E}f(e)\,e</math>;<br>(у4) <math>E</math> — максимальное независимое множество относительно <math>U</math>;<br>(у5) <math>E</math> — минимальное порождающее множество относительно <math>U</math>.</i></p> | <p><u>Теорема 1 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math> и <math>E\subseteq V</math>; тогда следующие утверждения эквивалентны:<br>(у1) <math>E</math> — базис пространства <math>V</math> относительно <math>U</math>;<br>(у2) <math>E</math> — независимое множество и <math>V=U\oplus\langle E\rangle</math> (и, значит, если <math>\dim V<\infty</math>, то <math>|E|=\dim V-\dim U</math>);<br>(у3) для любого вектора <math>v\in V</math> существуют единственные такие <math>u\in U</math> и <math>f\in\mathrm{FinFunc}(E,K)</math>, что <math>v=u+\sum_{e\in E}f(e)\,e</math>;<br>(у4) <math>E</math> — максимальное независимое множество относительно <math>U</math>;<br>(у5) <math>E</math> — минимальное порождающее множество относительно <math>U</math>.</i></p> | ||
<p><u>Теорема 2 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>U\le V</math>; тогда<br>(1) любое независимое подмножество в <math>V</math> относительно <math>U</math> можно дополнить до базиса в <math>V</math> относительно <math>U</math>;<br>(2) из любого порождающего подмножества в <math>V</math> относительно <math>U</math> можно выделить базис в <math>V</math> относительно <math>U</math>.</i></p> | <p><u>Теорема 2 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>U\le V</math>; тогда<br>(1) любое независимое подмножество в <math>V</math> относительно <math>U</math> можно дополнить до базиса в <math>V</math> относительно <math>U</math>;<br>(2) из любого порождающего подмножества в <math>V</math> относительно <math>U</math> можно выделить базис в <math>V</math> относительно <math>U</math>.</i></p> | ||
− | <li><u>Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math> и<br><math>a\in\mathrm{End}(V)</math>, а также <math>j\in\mathbb N</math>, <math>V_{j-1}=\mathrm{Ker}\,a^{j-1}</math>, <math>V_j=\mathrm{Ker}\,a^j</math> и <math>V_{j+1}=\mathrm{Ker}\,a^{j+1}</math>; тогда<br>(1) если <math>C</math> — независимое подмножество в <math>V_{j+1}</math> | + | <li><u>Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math> и<br><math>a\in\mathrm{End}(V)</math>, а также <math>j\in\mathbb N</math>, <math>V_{j-1}=\mathrm{Ker}\,a^{j-1}</math>, <math>V_j=\mathrm{Ker}\,a^j</math> и <math>V_{j+1}=\mathrm{Ker}\,a^{j+1}</math>; тогда<br>(1) если <math>C</math> — независимое подмножество в <math>V_{j+1}</math> относительно <math>V_j</math>, то <math>a|_C</math> — инъекция и <math>a(C)</math> — независимое подмножество в <math>V_j</math> относительно <math>V_{j-1}</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V_j-\dim V_{j-1}\ge\dim V_{j+1}-\dim V_j</math>.</i> |
<li>Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)</math> — прямая сумма жордановых клеток <math>\mathrm{jc}_{n_1}\!(c),\ldots,\mathrm{jc}_{n_r}\!(c)</math>, где <math>n_1,\ldots,n_r</math> — длины строк диаграммы Юнга <math>\Delta</math>. | <li>Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)</math> — прямая сумма жордановых клеток <math>\mathrm{jc}_{n_1}\!(c),\ldots,\mathrm{jc}_{n_r}\!(c)</math>, где <math>n_1,\ldots,n_r</math> — длины строк диаграммы Юнга <math>\Delta</math>. | ||
<li>Диаграмма Юнга <math>\Delta(a,c)</math>: высоты столбцов диаграммы <math>\Delta(a,c)</math> — относительные геометрич. кратности <math>\gamma_1(a,c),\ldots,\gamma_{\beta(a,c)}(a,c)</math>. Корректность опред.-я. | <li>Диаграмма Юнга <math>\Delta(a,c)</math>: высоты столбцов диаграммы <math>\Delta(a,c)</math> — относительные геометрич. кратности <math>\gamma_1(a,c),\ldots,\gamma_{\beta(a,c)}(a,c)</math>. Корректность опред.-я. | ||
<li>Теорема о жордановой нормальной форме. Обозначение: <math>\mathrm{jnf}(a)</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^\underline e\!\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_\underline e^e</math></i>. | <li>Теорема о жордановой нормальной форме. Обозначение: <math>\mathrm{jnf}(a)</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^\underline e\!\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_\underline e^e</math></i>. | ||
<p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и многочлен<br><math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых линейных операторов<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что матрица <math>a_e^e</math> —<br>прямая сумма жордановых блоков <math>\,\mathrm{jb}_{\Delta(a,c)}(c)</math> по всем <math>c\in\mathrm{Spec}(a)</math>.</i></p> | <p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и многочлен<br><math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых линейных операторов<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что матрица <math>a_e^e</math> —<br>прямая сумма жордановых блоков <math>\,\mathrm{jb}_{\Delta(a,c)}(c)</math> по всем <math>c\in\mathrm{Spec}(a)</math>.</i></p> | ||
− | <li>Многочлен (ряд) от | + | <li>Многочлен (ряд) от жордан. клетки: <math>f(\mathrm{jc}_n(c))=\sum_{k=0}^{n-1}\frac{f^{(k)}(c)}{k!}\,\mathrm{jc}_n(0)^k</math>. Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда <math>\det\mathrm e^a\!=\mathrm e^{\mathrm{tr}\,a}</math>, а также <math>\mathrm e^{a^\mathtt T}\!\!=(\mathrm e^a)^\mathtt T\!</math> и <math>\mathrm e^{\overline a^\mathtt T}\!\!=\bigl(\overline{\mathrm e^a}\bigr)^\mathtt T</math>. |
− | + | ||
<li>Однородная система линейных дифференциальных уравн.-й: <math>\frac{\mathrm dy}{\mathrm dt}=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb R^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb R)</math>). Решение системы: <math>y(t)=\mathrm e^{ta}\!\cdot v</math>, где <math>v\in\mathbb R^n</math>.</ul> | <li>Однородная система линейных дифференциальных уравн.-й: <math>\frac{\mathrm dy}{\mathrm dt}=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb R^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb R)</math>). Решение системы: <math>y(t)=\mathrm e^{ta}\!\cdot v</math>, где <math>v\in\mathbb R^n</math>.</ul> | ||
Версия 21:00, 6 августа 2018
Подробный план первой половины третьего семестра курса алгебры
11 Линейные операторы (часть 2)
11.1 Многочлены и ряды от линейных операторов
- Эвалюация — гомоморфизм. Алгебра, порожденная лин. оператором : .
- Минимальный многочлен лин. оператора : , нормирован, ; .
- Теорема Гамильтона–Кэли. Нильпотентный лин. оператор: . Утверждение: пусть — нильпот. лин. оператор; тогда .
Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.
Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда делит
(и, значит, для любых выполнено ), а также . - Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
(1) если , то (то есть — -инвариантное подпространство);
(2) если и делит , то ;
(3) если , и многочлены попарно взаимно просты, то
(и, значит, ). - Проектор (идемпотент): (). Отражение: () (здесь ).
- Ряд от лин. оператора ( — нормир. пр.-во): ; достаточное усл.-е сход.-сти ( — банах. пр.-во, ): .
- Экспонента от непрерывного линейн. оператора в банах. пр.-ве: . Пример: . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
Пусть — банахово пр.-во; тогда для любых выполнено , а также и .
11.2 Собственные и корневые подпространства линейного оператора
- Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.
Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
попарно различны; тогда
(1) ;
(2) если и — независимые множества, то — независимое множество;
(3) если , то для любых выполнено . - Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
следующие утверждения эквивалентны:
(у1) существует такой упорядоченный базис , что — диагональная матрица;
(у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
(у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
(у4) . - Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
- Жорданова клетка: . Пример: если , то и .
- Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
(1) для любых выполнено и, если , то ;
(2) для любых выполнено ;
(3) и . - Корневые подпространства: . Нильпотентные части линейного оператора : .
- Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
для любых линейных операторов в силу алгебраической замкнутости поля ); тогда
(1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
(2) для любых выполнено (и, значит, — нильпотентный линейный оператор) и .
11.3 Жорданова нормальная форма линейного оператора
- — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
- Базис в относительно — независ. и порожд. подмн.-во в относительно . Две теоремы об относительных базисах (без подробных доказательств).
Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
(у1) — базис пространства относительно ;
(у2) — независимое множество и (и, значит, если , то );
(у3) для любого вектора существуют единственные такие и , что ;
(у4) — максимальное независимое множество относительно ;
(у5) — минимальное порождающее множество относительно .Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого порождающего подмножества в относительно можно выделить базис в относительно . - Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
, а также , , и ; тогда
(1) если — независимое подмножество в относительно , то — инъекция и — независимое подмножество в относительно ;
(2) если , то . - Диаграммы Юнга. Жорданов блок: — прямая сумма жордановых клеток , где — длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
- Теорема о жордановой нормальной форме. Обозначение: . Утверждение: пусть и ; тогда .
Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , , и многочлен
раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для любых линейных операторов
в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что матрица —
прямая сумма жордановых блоков по всем . - Многочлен (ряд) от жордан. клетки: . Пусть и ; тогда , а также и .
- Однородная система линейных дифференциальных уравн.-й: (, ). Решение системы: , где .
12 Линейные операторы и ¯-билинейные формы
12.1 Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
- Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
- Утверждение: пусть и , или и ; тогда .
- Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
- Лемма об автоморфизмах пространств с формой и матрицах.
(1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
и, если форма невырождена, то условие "" можно убрать.
(2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
(3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда . - Матричные ортогонал. группы: , , , .
- Матричные унитарные группы: , , , .
- Примеры: , , .
- Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.
Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
(1) ;
(2) обозначая через , и группу и ее подгруппы и соответственно, имеем
следующие факты: , и , а также (и, значит, ).
12.2 Симметричные, антисимметричные, положительно определенные и нормальные операторы
- Пр.-во симметричных операторов: ; условие в коорд.: .
- Пр.-во антисимм. операторов: ; условие в коорд.: .
- Мн.-во положительно опред. операторов (, или ): .
- Пример: , и ; тогда — положит. определ. оператор.
- Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
- Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.
Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
(1) для любых и выполнено , и
(и, значит, отображение — ¯-антиэндоморфизм -алгебры );
(2) , а также и ;
(3) если , то для любых выполнено и .Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
и ; тогда , а также и . - Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.
Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
(1) если форма невырождена, то отображение — изоморфизм векторных пространств;
(2) если , то и ;
(3) если и или , то . - Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
12.3 Спектральная теория в унитарных пространствах
- Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
для любых выполнено , а также для любых таких , что , выполнено . - Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
(1) — диагональная матрица;
(2) — диагональная матрица с числами вида , где , на диагонали;
(3) — диагональная матрица с вещественными числами на диагонали;
(4) — диагональная матрица с числами вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема о спектральном разложении нормального оператора. Пусть — унитарное пространство и ; тогда
(1) (это спектральное разложение оператора ) и для любых выполнено ;
(2) для любых таких , что , выполнено и . - Теорема о собственных числах и собственных векторах унитарных, симметричных, антисимметричных и положительно определенных операторов.
Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
оператора выполнено , , , , а также
для любых двух различных собственных чисел и оператора выполнено . - Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
12.4 Спектральная теория в евклидовых пространствах
- -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
- -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
- Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
(1) существует такое подпространство пространства , что , и, если , то ;
(2) если , то для любых выполнено . - Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
, , , . - Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
(1) — -диагональная матрица;
(2) — -диагон. матрица с числами , и блоками вида , где , на диагонали;
(3) — диагональная матрица;
(4) — -диагональная матрица с числом и блоками вида , где , на диагонали;
(5) — диагональная матрица с положительными числами на диагонали. - Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
и , что (и, значит, — оператор поворота вокруг оси на угол ). - Теорема о симметричных билинейных формах в евклидовом пространстве. Пусть — евклидово пространство, и — оператор,
соответствующий форме относительно изоморфизма (то есть ); тогда
(1) в пространстве существует ортонормированный базис, ортогональный относительно формы (то есть );
(2) множество значений формы на единичной сфере в (то есть ) равно .
12.5 Специальная ортохронная группа Лоренца
- Матричная группа Лоренца: , где . Двумерная сфера: ().
- Теорема о матричной группе Лоренца.
(1) Пусть ; тогда , а также .
(2) Пусть и ; введем следующие обозначения: (), (),
, () и ; тогда , а также
и .
(3) — сюръективный гомоморфизм групп, и — трансверсаль слоев этого гомоморфизма.
(4) Обозначая через ядро гомоморфизма из пункта (3), имеем след. факты: и . - Матричная специальная ортохронная группа Лоренца: . Бусты: . Повороты: .
- Пр.-во Минковского — псевдоевкл. пр.-во сигнатуры ; (это опр.-е не завис. от выбора базиса).
- Спинорная модель пр.-ва Минковского: — пр.-во эрмит.-х матриц разм. . Матрицы Паули: , , .
- Теорема о спинорной модели пространства Минковского.
(1) Пусть ; тогда и .
(2) Пусть , и ; тогда и .
(3) Форма определяет на структуру пространства Минковского, и .
(4) Обозначая через подпространство в , имеем следующие факты: , сужение формы из пункта (3), взятое с
противоположным знаком, определяет на структуру евклидова пространства, и , а также . - Утверждение: . Теорема о бустах и поворотах (эскиз доказ.-ва).
Теорема о бустах и поворотах. Пусть , и ; тогда — буст в с быстротой вдоль оси с направляющим
вектором , и — поворот в на угол вокруг оси с направляющим вектором . - Спинорные представления: и — изоморфизмы групп (без доказ.-ва).
13 Многообразия (часть 1)
13.1 Определения и конструкции, связанные с многообразиями
- -Мерная система координат на топол. пр.-ве — гомеоморфизм между областями в и в ; отн.-е согласованности: — диффеоморфизм.
- -Мерный атлас на — множество попарно согласованных -мерных систем координат на , области определения которых покрывают . Примеры.
- -Мерное многообразие — хаусдорфово топол. пр.-во (со счетной базой) с максимальным -мерным атласом . Примеры: , области в , .
- Обозн.-е: . Отобр.-е — гладкое в : существуют такие и , что отобр.-е — гладкое в .
- Утверждение: гладкость отобр.-я не зависит от выбора систем координат. Множество гладких отображений между многообр.-ми и : .
- Обозначения: — множество кривых, — -алгебра функций.
- Скорость в координатах (, , ): и .
- Обозначения: и (тогда ). Лемма о замене координат.
Лемма о замене координат. Пусть — многообразие, , , и ; тогда
(1) (это матричная запись) и (это покомпонентная запись);
(2) для любых выполнено .
13.2 Касательные пространства и кокасательные пространства
- Отношение касания в точке : . Инвариантная скорость (): .
- Касательное пр.-во в точке : . Базисные векторы, определ. системой координат : .
- Теорема о касательном пространстве. Преобразования при замене координат на : и .
Теорема о касательном пространстве. Пусть — многообразие, , и ; тогда
(1) для любых , выбирая такую кривую , что , и обозначая через столбец , имеем следующий факт:
столбец не зависит от выбора кривой ;
(2) отображение — биекция; определим на структуру вект. простр.-ва над так, чтобы эта биекция стала изоморфизмом
вект. простр.-в (то есть ); тогда эта структура не зависит от выбора системы координат ;
(3) множество — базис пространства ;
(4) для любых выполнено (это формула разложения по базису в ). - Кокасательное пр.-во в точке : . Базисные ковекторы, определ. сист. коорд. : . Строка коорд. ковектора: .
- Разложение по базису в : . Преобр.-я при замене координат: и .
- Теорема о дифференциале функции. Пусть — многообразие, и ; тогда
(1) для любых , выбирая такую кривую , что , и обозначая через число , имеем
следующий факт: число не зависит от выбора кривой ;
(2) для любых и выполнено ;
(3) обозначая через отображение , имеем следующий факт: . - Дифференциал в координатах: и ; тогда .
- Производная Ли функции вдоль вектора (): . Утверждение: и
- Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
- Векторные поля и ковекторные поля (-формы): и .
- Пример: . Сложение и умножение на функцию в и . Действие -формы на векторное поле: .
- Векторные и ковекторные поля в координатах: и . Преобр.-я при замене: и .
- Тензорное расслоение типа : . Тензорные поля типа : .
- Тенз. произвед.-е тенз. полей типа и . Действие тенз. поля типа на вект. полей: .
- Тенз. поля типа в коорд.: . Преобр.-е при замене: .
- Произв.-я Ли функции вдоль вект. поля: . Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: .
Теорема об алгебре Ли векторных полей. Пусть — многообразие; тогда
(1) для любых имеем следующий факт: — дифференцирование алгебры (то есть );
(2) отображение — инъективный линейный оператор, и его образ — подалгебра алгебры Ли ;
определим на векторном пространстве бинарную операцию так, чтобы этот инъективный линейный оператор стал гомоморфизмом
алгебр Ли (то есть ); тогда — алгебра Ли относительно операции .