Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<h3>11&nbsp;&nbsp; Линейные операторы (часть 2)</h3>
 
<h3>11&nbsp;&nbsp; Линейные операторы (часть 2)</h3>
 
<h5>11.1&nbsp; Многочлены и ряды от линейных операторов</h5>
 
<h5>11.1&nbsp; Многочлены и ряды от линейных операторов</h5>
<ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Кольцо, порожденное лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>.
+
<ul><li>Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм. Алгебра, порожденная лин. оператором <math>a</math>: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a\le\mathrm{End}(V)</math>.
 
<li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>.
 
<li>Минимальный многочлен лин. оператора <math>a</math>: <math>\mu_a(a)=0</math>, <math>\mu_a</math> нормирован, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>.
 
<li><u>Теорема о ядрах многочленов от линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>f\in K[x]</math>, то <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\subseteq\mathrm{Ker}\,f(a)</math> (то есть <math>\mathrm{Ker}\,f(a)</math> — <math>a</math>-инвариантное подпространство);<br>(2) если <math>f,g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\subseteq\mathrm{Ker}\,g(a)</math>;<br>(3) если <math>k\in\mathbb N_0</math>, <math>f_1,\ldots,f_k\in K[x]</math> и многочлены <math>f_1,\ldots,f_k</math> попарно взаимно просты, то <math>\,\mathrm{Ker}\,(f_1\cdot\ldots\cdot f_k)(a)=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math><br>(и, значит, <math>(f_1\cdot\ldots\cdot f_k)(a)=0\;\Leftrightarrow\,V=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math>).</i>
 
<li><u>Теорема о ядрах многочленов от линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>f\in K[x]</math>, то <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\subseteq\mathrm{Ker}\,f(a)</math> (то есть <math>\mathrm{Ker}\,f(a)</math> — <math>a</math>-инвариантное подпространство);<br>(2) если <math>f,g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\subseteq\mathrm{Ker}\,g(a)</math>;<br>(3) если <math>k\in\mathbb N_0</math>, <math>f_1,\ldots,f_k\in K[x]</math> и многочлены <math>f_1,\ldots,f_k</math> попарно взаимно просты, то <math>\,\mathrm{Ker}\,(f_1\cdot\ldots\cdot f_k)(a)=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math><br>(и, значит, <math>(f_1\cdot\ldots\cdot f_k)(a)=0\;\Leftrightarrow\,V=\mathrm{Ker}\,f_1(a)\oplus\ldots\oplus\mathrm{Ker}\,f_k(a)</math>).</i>
<li>Проектор (идемпотент): <math>a^2=a\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a</math>. Отражение: <math>a^2=\mathrm{id}_V\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,(a+\mathrm{id}_V)</math> (здесь <math>\mathrm{char}\,K\ne2</math>).
+
<li>Проектор (идемпотент): <math>a^2=a{}</math> (<math>\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a{}</math>). Отражение: <math>a^2=\mathrm{id}_V{}</math> (<math>\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,(a+\mathrm{id}_V{})</math>) (здесь <math>\mathrm{char}\,K\ne2</math>).
<li>Собственные число и вектор лин. операт. <math>a</math>: <math>a(v)=c\,v\,\land\,v\ne0</math>. Спектр лин. операт. <math>a</math>: <math>\mathrm{Spec}(a)=\{c\in K\mid(a-c\cdot\mathrm{id}_V)\notin\mathrm{GL}(V)\}</math>. Лемма о спектре.
+
<li>Теорема Гамильтона–Кэли. Нильпотентный линейный оператор: <math>\exists\,m\in\mathbb N_0\;\bigl(a^m=0\bigr)</math>. Утверждение: <i>пусть <math>a</math> — нильпот. лин. оператор; тогда <math>\chi_a=x^n</math></i>.
<p><u>Лемма о спектре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное простр.-во над полем <math>K</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\{c\in K\mid\exists\,v\in V\!\setminus\!\{0\}\;\bigl(a(v)=c\,v\bigr)\}\subseteq\mathrm{Spec}(a)</math><br>и, если <math>\dim V<\infty</math>, то "<math>\,\subseteq</math>" можно заменить на "<math>\,=</math>".</i></p>
+
<li>Характеристический многочлен матрицы <math>a</math>: <math>\chi_a=\det(x\cdot\mathrm{id}_n-a)</math>. Характеристический многочлен лин. оператора <math>a</math>: <math>\chi_a=\chi_{a_e^e}</math>. Корректность опред.-я.
+
<li>След линейного оператора <math>a</math>: <math>\mathrm{tr}\,a=\mathrm{tr}\,a_e^e</math>. Корректность определения. Теорема о спектре и характеристическом многочлене. Теорема Гамильтона–Кэли.
+
<p><u>Теорема о спектре и характеристическом многочлене.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>\mathrm{Spec}(a)=\{c\in K\mid\chi_a(c)=0\}</math> (и, значит, <math>|\mathrm{Spec}(a)|\le\deg\chi_a=n</math>);<br>(2) <math>\chi_a=x^n-\mathrm{tr}\,a\cdot x^{n-1}+\ldots+(-1)^n\det a</math>;<br>(3) если <math>\exists\,m\in\mathbb N_0\;\bigl(a^m=0\bigr)</math> (то есть <math>a</math> — нильпотентный линейный оператор), то <math>\chi_a=x^n</math>.</i></p>
+
 
<p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p>
 
<p><u>Теорема Гамильтона–Кэли.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда <math>\chi_a(a)=0</math>.</i></p>
 
<li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене.
 
<li>Кратности: <math>\alpha(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\chi_a\}</math> (алгебраич. кратность), <math>\beta(a,c)=\max\{k\in\mathbb N_0\!\mid(x-c)^k\,|\,\mu_a\}</math>. Теорема о минимальном многочлене.

Версия 21:00, 5 августа 2018

Подробный план первой половины третьего семестра курса алгебры

11   Линейные операторы (часть 2)

11.1  Многочлены и ряды от линейных операторов
  • Эвалюация — гомоморфизм. Алгебра, порожденная лин. оператором : .
  • Минимальный многочлен лин. оператора : , нормирован, ; .
  • Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если , то (то есть -инвариантное подпространство);
    (2) если и делит , то ;
    (3) если , и многочлены попарно взаимно просты, то
    (и, значит, ).
  • Проектор (идемпотент): (). Отражение: () (здесь ).
  • Теорема Гамильтона–Кэли. Нильпотентный линейный оператор: . Утверждение: пусть — нильпот. лин. оператор; тогда .

    Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .

  • Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.

    Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) делит (и, значит, для любых выполнено );
    (2) .

11.2  Собственные, обобщенные собственные и корневые подпространства линейного оператора
  • Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.

    Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
    попарно различны; тогда
    (1) ;
    (2) если и — независимые множества, то — независимое множество;
    (3) если , то для любых выполнено .

  • Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие утверждения эквивалентны:
    (у1) существует такой упорядоченный базис , что — диагональная матрица;
    (у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
    (у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
    (у4) .
  • Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
  • Жорданова клетка: ; если , то и .
  • Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
    (1) для любых выполнено и, если , то ;
    (2) для любых выполнено ;
    (3) и .
  • Корневые подпространства: . Нильпотентные части линейного оператора : .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
    для любых линейных операторов в силу алгебраической замкнутости поля ); тогда
    (1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
    (2) для любых выполнено (и, значит, — нильпотентный линейный оператор) и .
11.3  Жорданова нормальная форма линейного оператора
  • — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
  • Базис в относительно — независ. и порожд. подмн.-во в относительно . Две теоремы об относительных базисах (без подробных доказательств).

    Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
    (у1) — базис пространства относительно ;
    (у2) — независимое множество и (и, значит, если , то );
    (у3) для любого вектора существуют единственные такие и , что ;
    (у4) — максимальное независимое множество относительно ;
    (у5) — минимальное порождающее множество относительно .

    Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого порождающего подмножества в относительно можно выделить базис в относительно .

  • Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
    , а также , , и ; тогда
    (1) если — независимое подмножество в относит.-но , то — инъекция и — независимое подмножество в относит.-но ;
    (2) если , то .
  • Диаграммы Юнга. Жорданов блок: — прямая сумма жордановых клеток , где — длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
  • Теорема о жордановой нормальной форме. Обозначение: . Утверждение: пусть и ; тогда .

    Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , , и многочлен
    раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для любых линейных операторов
    в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что матрица
    прямая сумма жордановых блоков по всем .

  • Многочлен (ряд) от жордановой клетки: . Экспонента от лин. операт. : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Пусть — банахово пространство и ; тогда , а также и .
    (2) Пусть и ; тогда , а также и .

  • Однородная система линейных дифференциальных уравн.-й: (, ). Решение системы: , где .

12   Линейные операторы и ¯-билинейные формы

12.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

12.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов (, или ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , а также и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
    и ; тогда , а также и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и ;
    (3) если и или , то .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
12.3  Спектральная теория в унитарных пространствах
  • Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
    для любых выполнено , а также для любых таких , что , выполнено .
  • Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Теорема о спектральном разложении нормального оператора. Пусть — унитарное пространство и ; тогда
    (1) (это спектральное разложение оператора ) и для любых выполнено ;
    (2) для любых таких , что , выполнено и .
  • Теорема о собственных числах и собственных векторах унитарных, симметричных, антисимметричных и положительно определенных операторов.
    Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , , а также
    для любых двух различных собственных чисел и оператора выполнено .
  • Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
12.4  Спектральная теория в евклидовых пространствах
  • -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
  • -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
  • Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
    (1) существует такое подпространство пространства , что , и, если , то ;
    (2) если , то для любых выполнено .
  • Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
    и , что (и, значит, — оператор поворота вокруг оси на угол ).
  • Теорема о симметричных билинейных формах в евклидовом пространстве. Пусть — евклидово пространство, и — оператор,
    соответствующий форме относительно изоморфизма (то есть ); тогда
    (1) в пространстве существует ортонормированный базис, ортогональный относительно формы (то есть );
    (2) множество значений формы на единичной сфере в (то есть ) равно .
12.5  Специальная ортохронная группа Лоренца
  • Матричная группа Лоренца: , где . Двумерная сфера: ().
  • Теорема о матричной группе Лоренца.
    (1) Пусть ; тогда , а также .
    (2) Пусть и ; введем следующие обозначения: (), (),
    , () и ; тогда , а также
    и .
    (3) — сюръективный гомоморфизм групп, и — трансверсаль слоев этого гомоморфизма.
    (4) Обозначая через ядро гомоморфизма из пункта (3), имеем след. факты: и .
  • Матричная специальная ортохронная группа Лоренца: . Бусты: . Повороты: .
  • Пр.-во Минковского — псевдоевкл. пр.-во сигнатуры ; (это опр.-е не завис. от выбора базиса).
  • Спинорная модель пр.-ва Минковского: — пр.-во эрмит.-х матриц разм. . Матрицы Паули: , , .
  • Теорема о спинорной модели пространства Минковского.
    (1) Пусть ; тогда и .
    (2) Пусть , и ; тогда и .
    (3) Форма определяет на структуру пространства Минковского, и .
    (4) Обозначая через подпространство в , имеем следующие факты: , сужение формы из пункта (3), взятое с
    противоположным знаком, определяет на структуру евклидова пространства, и , а также .
  • Утверждение: . Теорема о бустах и поворотах (эскиз доказ.-ва).

    Теорема о бустах и поворотах. Пусть , и ; тогда — буст в с быстротой вдоль оси с направляющим
    вектором , и — поворот в на угол вокруг оси с направляющим вектором .

  • Спинорные представления: и — изоморфизмы групп (без доказ.-ва).

13   Многообразия (часть 1)

13.1  Определения и конструкции, связанные с многообразиями
  • -Мерная система координат на топол. пр.-ве — гомеоморфизм между областями в и в ; отн.-е согласованности: — диффеоморфизм.
  • -Мерный атлас на — множество попарно согласованных -мерных систем координат на , области определения которых покрывают . Примеры.
  • -Мерное многообразие — хаусдорфово топол. пр.-во (со счетной базой) с максимальным -мерным атласом . Примеры: , области в , .
  • Обозн.-е: . Отобр.-е — гладкое в : существуют такие и , что отобр.-е — гладкое в .
  • Утверждение: гладкость отобр.-я не зависит от выбора систем координат. Множество гладких отображений между многообр.-ми и : .
  • Обозначения: — множество кривых, -алгебра функций.
  • Скорость в координатах (, , ): и .
  • Обозначения: и (тогда ). Лемма о замене координат.

    Лемма о замене координат. Пусть — многообразие, , , и ; тогда
    (1) (это матричная запись) и (это покомпонентная запись);
    (2) для любых выполнено .

13.2  Касательные пространства и кокасательные пространства
  • Отношение касания в точке : . Инвариантная скорость (): .
  • Касательное пр.-во в точке : . Базисные векторы, определ. системой координат : .
  • Теорема о касательном пространстве. Преобразования при замене координат на : и .

    Теорема о касательном пространстве. Пусть — многообразие, , и ; тогда
    (1) для любых , выбирая такую кривую , что , и обозначая через столбец , имеем следующий факт:
    столбец не зависит от выбора кривой ;
    (2) отображение — биекция; определим на структуру вект. простр.-ва над так, чтобы эта биекция стала изоморфизмом
    вект. простр.-в (то есть ); тогда эта структура не зависит от выбора системы координат ;
    (3) множество — базис пространства ;
    (4) для любых выполнено (это формула разложения по базису в ).

  • Кокасательное пр.-во в точке : . Базисные ковекторы, определ. сист. коорд. : . Строка коорд. ковектора: .
  • Разложение по базису в : . Преобр.-я при замене координат: и .
  • Теорема о дифференциале функции. Пусть — многообразие, и ; тогда
    (1) для любых , выбирая такую кривую , что , и обозначая через число , имеем
    следующий факт: число не зависит от выбора кривой ;
    (2) для любых и выполнено ;
    (3) обозначая через отображение , имеем следующий факт: .
  • Дифференциал в координатах: и ; тогда .
  • Производная Ли функции вдоль вектора (): . Утверждение: и
  • Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
  • Векторные поля и ковекторные поля (-формы): и .
  • Пример: . Сложение и умножение на функцию в и . Действие -формы на векторное поле: .
  • Векторные и ковекторные поля в координатах: и . Преобр.-я при замене: и .
  • Тензорное расслоение типа : . Тензорные поля типа : .
  • Тенз. произвед.-е тенз. полей типа и . Действие тенз. поля типа на вект. полей: .
  • Тенз. поля типа в коорд.: . Преобр.-е при замене: .
  • Произв.-я Ли функции вдоль вект. поля: . Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: .

    Теорема об алгебре Ли векторных полей. Пусть — многообразие; тогда
    (1) для любых имеем следующий факт: — дифференцирование алгебры (то есть );
    (2) отображение — инъективный линейный оператор, и его образ — подалгебра алгебры Ли ;
    определим на векторном пространстве бинарную операцию так, чтобы этот инъективный линейный оператор стал гомоморфизмом
    алгебр Ли (то есть ); тогда — алгебра Ли относительно операции .