Алгебра phys 1 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | <h2> | + | <h2>Подробный план второй половины первого семестра курса алгебры</h2> |
− | <h3> | + | <h3>4 Кольца (часть 2)</h3> |
− | <h5> | + | <h5>4.1 Делимость в коммутативных кольцах</h5> |
<ul><li>Делимость, строгая делимость, ассоциированность в коммутат. кольце <math>R</math>: <math>s\,|\,r\;\Leftrightarrow\;\exists\,t\in R\;\bigl(r=s\,t\bigr)</math>; <math>s\,|\!\!|\!\!|\,r\;\Leftrightarrow\;s\,|\,r\,\land\,\lnot(r\,|\,s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;r\,|\,s\,\land\,s\,|\,r</math>. | <ul><li>Делимость, строгая делимость, ассоциированность в коммутат. кольце <math>R</math>: <math>s\,|\,r\;\Leftrightarrow\;\exists\,t\in R\;\bigl(r=s\,t\bigr)</math>; <math>s\,|\!\!|\!\!|\,r\;\Leftrightarrow\;s\,|\,r\,\land\,\lnot(r\,|\,s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;r\,|\,s\,\land\,s\,|\,r</math>. | ||
<li>Утверждение: <i>пусть <math>R</math> — обл. цел.-сти, <math>r,s,y,z\in R</math> и <math>s\ne0</math>; тогда <math>s\,y=s\,z\,\Rightarrow\,y=z\,</math> и <math>\,r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,\exists\,t\in R^\times\bigl(r=s\,t\bigr)</math></i>. Обозн.-е <math>\frac rs</math> в обл. цел.-сти. | <li>Утверждение: <i>пусть <math>R</math> — обл. цел.-сти, <math>r,s,y,z\in R</math> и <math>s\ne0</math>; тогда <math>s\,y=s\,z\,\Rightarrow\,y=z\,</math> и <math>\,r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,\exists\,t\in R^\times\bigl(r=s\,t\bigr)</math></i>. Обозн.-е <math>\frac rs</math> в обл. цел.-сти. | ||
Строка 13: | Строка 13: | ||
<li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если <math>R</math> — область главных идеалов, то <math>\,\mathrm{Irr}(R)=\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Prime}(R)</math> и (у2) <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область главных идеалов, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Irr}(R)</math>, (у2) <math>r\in\mathrm{Prime}(R)</math>,<br>(у3) <math>R/(r)</math> — область целостности и (у4) <math>R/(r)</math> — поле.</i></ul> | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если <math>R</math> — область главных идеалов, то <math>\,\mathrm{Irr}(R)=\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Prime}(R)</math> и (у2) <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область главных идеалов, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Irr}(R)</math>, (у2) <math>r\in\mathrm{Prime}(R)</math>,<br>(у3) <math>R/(r)</math> — область целостности и (у4) <math>R/(r)</math> — поле.</i></ul> | ||
− | <h5> | + | <h5>4.2 Евклидовы кольца и факториальные кольца</h5> |
<ul><li>Евклидова норма — такая функция <math>\nu\,\colon R\to\mathbb N_0\cup\{-\infty\}</math>, что относ.-но <math>\nu</math> можно делить с остатком на ненул. эл.-ты и <math>\nu</math> не убывает относ.-но <math>|</math> на <math>R\!\setminus\!\{0\}</math>. | <ul><li>Евклидова норма — такая функция <math>\nu\,\colon R\to\mathbb N_0\cup\{-\infty\}</math>, что относ.-но <math>\nu</math> можно делить с остатком на ненул. эл.-ты и <math>\nu</math> не убывает относ.-но <math>|</math> на <math>R\!\setminus\!\{0\}</math>. | ||
<li>Евклидово кольцо — область целостности с евклидовой нормой. Примеры: <math>\mathbb Z</math> (<math>\nu(a)=|a|</math>); <math>K[x]</math> (<math>\nu(f)=\deg f</math>); <math>\mathbb Z[\mathrm i]</math>, <math>\mathbb Z[\sqrt2\,\mathrm i]</math>, <math>\mathbb Z[\mathrm e^{\frac{2\pi}3\mathrm i}]</math> (<math>\nu(a)=|a|^2</math>). | <li>Евклидово кольцо — область целостности с евклидовой нормой. Примеры: <math>\mathbb Z</math> (<math>\nu(a)=|a|</math>); <math>K[x]</math> (<math>\nu(f)=\deg f</math>); <math>\mathbb Z[\mathrm i]</math>, <math>\mathbb Z[\sqrt2\,\mathrm i]</math>, <math>\mathbb Z[\mathrm e^{\frac{2\pi}3\mathrm i}]</math> (<math>\nu(a)=|a|^2</math>). | ||
Строка 22: | Строка 22: | ||
<li><u>Теорема о факториальных кольцах.</u> <i>Пусть <math>R</math> — факториальное кольцо и <math>r,s\in R\!\setminus\!\{0\}</math>; разложим <math>r</math> и <math>s</math> в произведение неприводимых элементов:<br><math>r\overset{\scriptscriptstyle\mid}\sim p_1^{d_1}\!\cdot\ldots\cdot p_k^{d_k}</math> и <math>s\overset{\scriptscriptstyle\mid}\sim p_1^{e_1}\!\cdot\ldots\cdot p_k^{e_k}</math>, где <math>k\in\mathbb N_0</math>, <math>p_1,\ldots,p_k\in\mathrm{Irr}(R)</math>, <math>p_1,\ldots,p_k</math> попарно неассоциированы и <math>d_1,\ldots,d_k,e_1,\ldots,e_k\in\mathbb N_0</math>; тогда<br>(1) <math>s\,|\,r\;\Leftrightarrow\;\forall\,i\in\{1,\ldots,k\}\;\bigl(e_i\le d_i\bigr)</math> и <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;\forall\,i\in\{1,\ldots,k\}\;\bigl(d_i=e_i\bigr)</math>;<br>(2) <math>\mathrm{gcd}(r,s)\overset{\scriptscriptstyle\mid}\sim p_1^{\min(d_1,e_1)}\!\cdot\ldots\cdot p_k^{\min(d_k,e_k)}</math> и <math>\,\mathrm{lcm}(r,s)\overset{\scriptscriptstyle\mid}\sim p_1^{\max(d_1,e_1)}\!\cdot\ldots\cdot p_k^{\max(d_k,e_k)}</math>.</i></ul> | <li><u>Теорема о факториальных кольцах.</u> <i>Пусть <math>R</math> — факториальное кольцо и <math>r,s\in R\!\setminus\!\{0\}</math>; разложим <math>r</math> и <math>s</math> в произведение неприводимых элементов:<br><math>r\overset{\scriptscriptstyle\mid}\sim p_1^{d_1}\!\cdot\ldots\cdot p_k^{d_k}</math> и <math>s\overset{\scriptscriptstyle\mid}\sim p_1^{e_1}\!\cdot\ldots\cdot p_k^{e_k}</math>, где <math>k\in\mathbb N_0</math>, <math>p_1,\ldots,p_k\in\mathrm{Irr}(R)</math>, <math>p_1,\ldots,p_k</math> попарно неассоциированы и <math>d_1,\ldots,d_k,e_1,\ldots,e_k\in\mathbb N_0</math>; тогда<br>(1) <math>s\,|\,r\;\Leftrightarrow\;\forall\,i\in\{1,\ldots,k\}\;\bigl(e_i\le d_i\bigr)</math> и <math>r\overset{\scriptscriptstyle\mid}\sim s\;\Leftrightarrow\;\forall\,i\in\{1,\ldots,k\}\;\bigl(d_i=e_i\bigr)</math>;<br>(2) <math>\mathrm{gcd}(r,s)\overset{\scriptscriptstyle\mid}\sim p_1^{\min(d_1,e_1)}\!\cdot\ldots\cdot p_k^{\min(d_k,e_k)}</math> и <math>\,\mathrm{lcm}(r,s)\overset{\scriptscriptstyle\mid}\sim p_1^{\max(d_1,e_1)}\!\cdot\ldots\cdot p_k^{\max(d_k,e_k)}</math>.</i></ul> | ||
− | <h5> | + | <h5>4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера</h5> |
<ul><li>Соотношение Безу для эл.-тов <math>r</math> и <math>s</math> евклидова кольца: <math>u\,r+v\,s\overset{\scriptscriptstyle\mid}\sim\mathrm{gcd}(r,s)</math>, где <math>u</math> и <math>v</math> — коэффициенты Безу. Нахождение <math>(s+(r))^{-1}</math> в кольце <math>R/(r)</math>. | <ul><li>Соотношение Безу для эл.-тов <math>r</math> и <math>s</math> евклидова кольца: <math>u\,r+v\,s\overset{\scriptscriptstyle\mid}\sim\mathrm{gcd}(r,s)</math>, где <math>u</math> и <math>v</math> — коэффициенты Безу. Нахождение <math>(s+(r))^{-1}</math> в кольце <math>R/(r)</math>. | ||
<li>Алгоритм Евклида в евклидовом кольце: <math>r_0=s</math> и <math>r_1=r</math>; на <math>i</math>-м шаге <math>r_{i-1}=q_ir_i+r_{i+1}</math> и <math>\nu(r_{i+1})<\nu(r_i)</math>; тогда, если <math>r_{n+1}=0</math>, то <math>r_n\overset{\scriptscriptstyle\mid}\sim\mathrm{gcd}(r,s)</math>. | <li>Алгоритм Евклида в евклидовом кольце: <math>r_0=s</math> и <math>r_1=r</math>; на <math>i</math>-м шаге <math>r_{i-1}=q_ir_i+r_{i+1}</math> и <math>\nu(r_{i+1})<\nu(r_i)</math>; тогда, если <math>r_{n+1}=0</math>, то <math>r_n\overset{\scriptscriptstyle\mid}\sim\mathrm{gcd}(r,s)</math>. | ||
Строка 31: | Строка 31: | ||
<li><u>Теорема о свойствах функции Эйлера.</u><br><i>(1) Пусть <math>n\in\mathbb N</math>, <math>a\in\mathbb Z</math> и <math>\mathrm{gcd}(a,n)=1</math>; тогда <math>a^{\phi(n)}\!\equiv1\;(\mathrm{mod}\;n)</math> (это теорема Эйлера).<br>(2) Пусть <math>m,n\in\mathbb N</math> и <math>\mathrm{gcd}(m,n)=1</math>; тогда <math>\phi(mn)=\phi(m)\,\phi(n)</math>.<br>(3) Пусть <math>n\in\mathbb N</math>; разложим <math>n</math> в произведение простых чисел: <math>n=p_1^{d_1}\!\cdot\ldots\cdot p_k^{d_k}</math>, где <math>k\in\mathbb N_0</math>, <math>p_1,\ldots,p_k\in\mathbb P</math>, <math>p_1,\ldots,p_k</math> попарно различны и<br><math>d_1,\ldots,d_k\in\mathbb N</math>; тогда <math>\phi(n)=p_1^{d_1-1}(p_1-1)\cdot\ldots\cdot p_k^{d_k-1}(p_k-1)=n\,\Bigl(1-\frac1{p_1}\Bigr)\cdot\ldots\cdot\Bigl(1-\frac1{p_k}\Bigr)</math>.</i></ul> | <li><u>Теорема о свойствах функции Эйлера.</u><br><i>(1) Пусть <math>n\in\mathbb N</math>, <math>a\in\mathbb Z</math> и <math>\mathrm{gcd}(a,n)=1</math>; тогда <math>a^{\phi(n)}\!\equiv1\;(\mathrm{mod}\;n)</math> (это теорема Эйлера).<br>(2) Пусть <math>m,n\in\mathbb N</math> и <math>\mathrm{gcd}(m,n)=1</math>; тогда <math>\phi(mn)=\phi(m)\,\phi(n)</math>.<br>(3) Пусть <math>n\in\mathbb N</math>; разложим <math>n</math> в произведение простых чисел: <math>n=p_1^{d_1}\!\cdot\ldots\cdot p_k^{d_k}</math>, где <math>k\in\mathbb N_0</math>, <math>p_1,\ldots,p_k\in\mathbb P</math>, <math>p_1,\ldots,p_k</math> попарно различны и<br><math>d_1,\ldots,d_k\in\mathbb N</math>; тогда <math>\phi(n)=p_1^{d_1-1}(p_1-1)\cdot\ldots\cdot p_k^{d_k-1}(p_k-1)=n\,\Bigl(1-\frac1{p_1}\Bigr)\cdot\ldots\cdot\Bigl(1-\frac1{p_k}\Bigr)</math>.</i></ul> | ||
− | <h5> | + | <h5>4.4 Производная многочлена, интерполяция, рациональные дроби</h5> |
<ul><li>Производная многочлена: <math>(f_nx^n+\ldots+f_0)'\!=nf_nx^{n-1}+\ldots+f_1</math>. <u>Правило Лейбница.</u> <i>Пусть <math>R</math> — кольцо и <math>f,g\in R[x]</math>; тогда <math>(fg)'\!=f'g+f\,g'</math>.</i> | <ul><li>Производная многочлена: <math>(f_nx^n+\ldots+f_0)'\!=nf_nx^{n-1}+\ldots+f_1</math>. <u>Правило Лейбница.</u> <i>Пусть <math>R</math> — кольцо и <math>f,g\in R[x]</math>; тогда <math>(fg)'\!=f'g+f\,g'</math>.</i> | ||
<li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)</math> (<math>\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>). Теорема о кратных корнях. | <li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)</math> (<math>\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>). Теорема о кратных корнях. | ||
Строка 43: | Строка 43: | ||
<li>Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).</ul> | <li>Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).</ul> | ||
− | <h5> | + | <h5>4.5 Матрицы, столбцы, строки</h5> |
<ul><li>Множества матриц, столбцов и строк: <math>\mathrm{Mat}(p,n,R)</math>, <math>R^n\!=\mathrm{Mat}(n,1,R)</math> и <math>R_n\!=\mathrm{Mat}(1,n,R)</math>. Сложение матриц и умножение матриц на скаляры. | <ul><li>Множества матриц, столбцов и строк: <math>\mathrm{Mat}(p,n,R)</math>, <math>R^n\!=\mathrm{Mat}(n,1,R)</math> и <math>R_n\!=\mathrm{Mat}(1,n,R)</math>. Сложение матриц и умножение матриц на скаляры. | ||
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>. | <li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>. | ||
Строка 55: | Строка 55: | ||
<li>Симметричные и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math>, <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.</ul> | <li>Симметричные и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math>, <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.</ul> | ||
− | <h3> | + | <h3>5 Группы (часть 2)</h3> |
− | <h5> | + | <h5>5.1 Символ Леви-Чивиты и симметрические группы</h5> |
<ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i\ne j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math>. Мн.-во инверсий: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. | <ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i\ne j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math>. Мн.-во инверсий: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. | ||
<li><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb Z</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i> | <li><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb Z</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i> | ||
Строка 66: | Строка 66: | ||
<li>Задание группы <math>\mathrm S_n</math> образующими и соотношениями: <math>\mathrm S_n</math> порождена образ.-ми <math>d_1,\ldots,d_{n-1}</math> с соотн.-ми инволютивности, локальности и кос (без док.-ва).</ul> | <li>Задание группы <math>\mathrm S_n</math> образующими и соотношениями: <math>\mathrm S_n</math> порождена образ.-ми <math>d_1,\ldots,d_{n-1}</math> с соотн.-ми инволютивности, локальности и кос (без док.-ва).</ul> | ||
− | <h5> | + | <h5>5.2 Определитель матрицы и группы матриц</h5> |
<ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\!\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\!\varepsilon_{j_1,\ldots,j_n}a^{j_1}_1\!\cdot\ldots\cdot a^{j_n}_n=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n\!</math>. Расстановки ладей и <math>\det</math>. | <ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\!\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\!\varepsilon_{j_1,\ldots,j_n}a^{j_1}_1\!\cdot\ldots\cdot a^{j_n}_n=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n\!</math>. Расстановки ладей и <math>\det</math>. | ||
<li>Примеры: <math>\det\bigl(v_1\;v_2\bigr)</math> — ориентированная площадь, <math>\det\bigl(v_1\;v_2\;v_3\bigr)\!=(v_1\times v_2\!\mid\!v_3)</math> — ориентиров. объем. Лемма об определителе набора столбцов. | <li>Примеры: <math>\det\bigl(v_1\;v_2\bigr)</math> — ориентированная площадь, <math>\det\bigl(v_1\;v_2\;v_3\bigr)\!=(v_1\times v_2\!\mid\!v_3)</math> — ориентиров. объем. Лемма об определителе набора столбцов. | ||
<p><u>Лемма об определителе набора столбцов.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>n\in\mathbb N_0</math>, <math>v_1,\ldots,v_n,v,v'\!\in R^n</math> и <math>c,c'\!\in R</math>; тогда<br>(1) <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(\det\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)\!=c\,\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\;v_{i+1}\;\ldots\;v_n\bigr)\!+c'\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)\bigr)</math>;<br>(2) если столбцы <math>v_1,\ldots,v_n</math> не попарно различны, то <math>\det\bigl(v_1\;\ldots\;v_n\bigr)\!=0</math>;<br>(3) для любых <math>j_1,\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>\det\bigl(v_{j_1}\;\ldots\;v_{j_n}\bigr)\!=\varepsilon_{j_1,\ldots,j_n}\!\det\bigl(v_1\;\ldots\;v_n\bigr)</math>.</i></p> | <p><u>Лемма об определителе набора столбцов.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>n\in\mathbb N_0</math>, <math>v_1,\ldots,v_n,v,v'\!\in R^n</math> и <math>c,c'\!\in R</math>; тогда<br>(1) <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(\det\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)\!=c\,\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\;v_{i+1}\;\ldots\;v_n\bigr)\!+c'\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)\bigr)</math>;<br>(2) если столбцы <math>v_1,\ldots,v_n</math> не попарно различны, то <math>\det\bigl(v_1\;\ldots\;v_n\bigr)\!=0</math>;<br>(3) для любых <math>j_1,\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>\det\bigl(v_{j_1}\;\ldots\;v_{j_n}\bigr)\!=\varepsilon_{j_1,\ldots,j_n}\!\det\bigl(v_1\;\ldots\;v_n\bigr)</math>.</i></p> | ||
− | <li><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) | + | <li><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) <math>\biggl(\!\begin{align}\mathrm{Mat}(n,R)&\to R\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению, а также <math>\mathrm{GL}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid\det a\in R^\times\}</math> (доказ.-во только <math>\,\subseteq</math>);<br>(2) для любых <math>a,b\in\mathrm{Mat}(n,R)</math> и <math>v_1,\ldots,v_n\in R^n</math> выполнено <math>\det\bigl(a\cdot v_1\;\ldots\;a\cdot v_n\bigr)\!=\det a\cdot\det\bigl(v_1\;\ldots\;v_n\bigr)</math>, а также <math>b\cdot a=\mathrm{id}_n\Rightarrow\,b=a^{-1}</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a^\mathtt T\!=\det a</math>;<br>(4) для любых <math>n',n''\!\in\mathbb N_0</math>, <math>a'\!\in\mathrm{Mat}(n',R)</math>, <math>a''\!\in\mathrm{Mat}(n'',R)</math> и <math>b\in\mathrm{Mat}(n',n'',R)</math> выполнено <math>\det\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)\!=\det a'\!\cdot\det a''</math>.</i> |
− | <li>Специальная линейная группа: <math>\mathrm{SL}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,R)</math>. Геом. смысл: <math> | + | <li>Специальная линейная группа: <math>\mathrm{SL}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,R)</math>. Геом. смысл: <math>a\in\mathrm{SL}(n,R)</math><math>\,\,\Leftrightarrow\;</math><math>\bigl(</math><math>a</math> сохраняет ориент. объем<math>\bigr)</math>. |
− | <li>Аффинная линейная группа: <math>\mathrm{AGL}(n,R)=\bigl\{\Bigl(\begin{smallmatrix}a&z\\0&1\end{smallmatrix}\Bigr)\!\mid a\in\mathrm{GL}(n,R),\,z\in R^n\bigr\}\le\mathrm{GL}(n+1,R)</math>. Геометрический смысл: <math>\Bigl(\begin{smallmatrix}a&z\\0&1\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}v\\1\end{smallmatrix}\Bigr)=\Bigl(\begin{smallmatrix}a\cdot v\,+\,z\\1\end{smallmatrix}\Bigr)</math>. | + | <li>Аффинная линейная группа: <math>\mathrm{AGL}(n,R)=\bigl\{\Bigl(\begin{smallmatrix}a&z\\0&1\end{smallmatrix}\Bigr)\!\mid a\in\mathrm{GL}(n,R),\,z\in R^n\bigr\}\le\mathrm{GL}(n+1,R)</math>. Геометрический смысл: <math>\Bigl(\begin{smallmatrix}a&z\\0&1\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}v\\1\end{smallmatrix}\Bigr)=\Bigl(\begin{smallmatrix}a\,\cdot\,v\,+\,z\\1\end{smallmatrix}\Bigr)</math>. |
<li>Ортогональная группа: <math>\mathrm O(n)=\{a\in\mathrm{Mat}(n,\mathbb R)\mid a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb R)</math>. Специальная ортогонал. группа: <math>\mathrm{SO}(n)=\mathrm{SL}(n,\mathbb R)\cap\mathrm O(n)\trianglelefteq\mathrm O(n)</math>. | <li>Ортогональная группа: <math>\mathrm O(n)=\{a\in\mathrm{Mat}(n,\mathbb R)\mid a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb R)</math>. Специальная ортогонал. группа: <math>\mathrm{SO}(n)=\mathrm{SL}(n,\mathbb R)\cap\mathrm O(n)\trianglelefteq\mathrm O(n)</math>. | ||
<li>Унитарная группа: <math>\mathrm U(n)=\{a\in\mathrm{Mat}(n,\mathbb C)\mid a^\mathtt T\!\cdot\overline a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb C)</math>. Специальная унитарная группа: <math>\mathrm{SU}(n)=\mathrm{SL}(n,\mathbb C)\cap\mathrm U(n)\trianglelefteq\mathrm U(n)</math>. | <li>Унитарная группа: <math>\mathrm U(n)=\{a\in\mathrm{Mat}(n,\mathbb C)\mid a^\mathtt T\!\cdot\overline a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb C)</math>. Специальная унитарная группа: <math>\mathrm{SU}(n)=\mathrm{SL}(n,\mathbb C)\cap\mathrm U(n)\trianglelefteq\mathrm U(n)</math>. | ||
Строка 78: | Строка 78: | ||
<p><u>Теорема о комплексных числах и вещественных матрицах.</u> <i>Отображение <math>\Biggl(\!\begin{align}\mathbb C&\to\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R\bigr\}\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math> — изоморфизм колец, <math>\mathrm S^1\!=\mathrm U(1)</math> и<br><math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, а также отображение <math>\biggl(\!\begin{align}\mathrm S^1\!=\mathrm U(1)&\to\mathrm{SO}(2)\\\cos\varphi+\sin\varphi\;\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — изоморфизм групп.</i></p></ul> | <p><u>Теорема о комплексных числах и вещественных матрицах.</u> <i>Отображение <math>\Biggl(\!\begin{align}\mathbb C&\to\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R\bigr\}\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math> — изоморфизм колец, <math>\mathrm S^1\!=\mathrm U(1)</math> и<br><math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, а также отображение <math>\biggl(\!\begin{align}\mathrm S^1\!=\mathrm U(1)&\to\mathrm{SO}(2)\\\cos\varphi+\sin\varphi\;\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — изоморфизм групп.</i></p></ul> | ||
− | <h5> | + | <h5>5.3 Действия групп на множествах</h5> |
<ul><li>Действие <math>\pi</math> группы <math>G</math> на множ.-ве <math>X</math> — гомоморфизм моноидов <math>\biggl(\!\begin{align}G&\to\mathrm{Map}(X)\\g&\mapsto\pi_g\end{align}\!\biggr)</math>. Утверждение: <math>\forall\,g\in G\;\bigl(\pi_g\!\in\mathrm{Bij}(X)\bigr)</math>. Обозначение: <math>g\,x=\pi_g(x)</math>. | <ul><li>Действие <math>\pi</math> группы <math>G</math> на множ.-ве <math>X</math> — гомоморфизм моноидов <math>\biggl(\!\begin{align}G&\to\mathrm{Map}(X)\\g&\mapsto\pi_g\end{align}\!\biggr)</math>. Утверждение: <math>\forall\,g\in G\;\bigl(\pi_g\!\in\mathrm{Bij}(X)\bigr)</math>. Обозначение: <math>g\,x=\pi_g(x)</math>. | ||
<li>Примеры: <math>\mathrm{Bij}(X)</math> действует на <math>X</math>, группы матриц действуют на <math>\mathbb R^n</math>, группа <math>G</math> действует на <math>G/H</math> (где <math>H\le G</math>) умножением слева и на <math>G</math> сопряжением. | <li>Примеры: <math>\mathrm{Bij}(X)</math> действует на <math>X</math>, группы матриц действуют на <math>\mathbb R^n</math>, группа <math>G</math> действует на <math>G/H</math> (где <math>H\le G</math>) умножением слева и на <math>G</math> сопряжением. | ||
Строка 88: | Строка 88: | ||
<li>Свободное действие (<math>X</math> — свободное <math>G</math>-мн.-во): <math>\forall\,x\in X\;\bigl(\mathrm{St}_G(x)=\{1\}\bigr)</math>. Торсор — однородное свободное <math>G</math>-мн.-во: <math>\forall\,x,y\in X\;\,\exists!\,g\in G\;\bigl(y=g\,x\bigr)</math>. | <li>Свободное действие (<math>X</math> — свободное <math>G</math>-мн.-во): <math>\forall\,x\in X\;\bigl(\mathrm{St}_G(x)=\{1\}\bigr)</math>. Торсор — однородное свободное <math>G</math>-мн.-во: <math>\forall\,x,y\in X\;\,\exists!\,g\in G\;\bigl(y=g\,x\bigr)</math>. | ||
<li>Теорема о классах смежности по стабилизатору. Неподвижные точки: <math>\mathrm{Fix}_X(g)=\{x\in X\mid g\,x=x\}</math>. Лемма Бернсайда. Пример: <math>\frac1{n!}\!\sum_{u\in\mathrm S_n}|\mathrm{Fix}(u)|=1</math>. | <li>Теорема о классах смежности по стабилизатору. Неподвижные точки: <math>\mathrm{Fix}_X(g)=\{x\in X\mid g\,x=x\}</math>. Лемма Бернсайда. Пример: <math>\frac1{n!}\!\sum_{u\in\mathrm S_n}|\mathrm{Fix}(u)|=1</math>. | ||
− | <p><u>Теорема о классах смежности по стабилизатору.</u> <i>Пусть <math>G</math> — группа, <math>X</math> — <math>G</math>-множество и <math>x\in X</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}G/\,\mathrm{St}_G(x)&\to X\\g\,\mathrm{St}_G(x)&\mapsto g\,x\end{align}\!\biggr)</math> определено корректно, является инъективным гомоморфизмом <math>G</math>-множеств и его образ есть <math>Gx</math>;<br>(2) если <math>|G|<\infty</math>, то <math>| | + | <p><u>Теорема о классах смежности по стабилизатору.</u> <i>Пусть <math>G</math> — группа, <math>X</math> — <math>G</math>-множество и <math>x\in X</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}G/\,\mathrm{St}_G(x)&\to X\\g\,\mathrm{St}_G(x)&\mapsto g\,x\end{align}\!\biggr)</math> определено корректно, является инъективным гомоморфизмом <math>G</math>-множеств и его образ есть <math>Gx</math>;<br>(2) если <math>|G|<\infty</math>, то <math>|G|=|\mathrm{St}_G(x)|\,|Gx|</math> (и, значит, <math>|Gx|</math> делит <math>|G|</math>).</i></p> |
<p><u>Лемма Бернсайда.</u> <i>Пусть <math>G</math> — группа, <math>X</math> — <math>G</math>-множество и <math>|G|<\infty</math>; тогда <math>|X/G|=\frac1{|G|}\sum_{g\in G}|\mathrm{Fix}_X(g)|</math>.</i></p></ul> | <p><u>Лемма Бернсайда.</u> <i>Пусть <math>G</math> — группа, <math>X</math> — <math>G</math>-множество и <math>|G|<\infty</math>; тогда <math>|X/G|=\frac1{|G|}\sum_{g\in G}|\mathrm{Fix}_X(g)|</math>.</i></p></ul> | ||
− | <h5> | + | <h5>5.4 Автоморфизмы, коммутант, полупрямое произведение групп</h5> |
<ul><li>Группа автоморфизмов: <math>\mathrm{Aut}(G)</math>. Пример: <math>\mathrm{Aut}((\mathbb Z/n)^+)\cong(\mathbb Z/n)^\times</math>. Группа внутренних автоморф.-в: <math>\mathrm{Inn}(G)=\{\bigl(x\mapsto g\,x\,g^{-1}\bigr)\!\mid g\in G\}\le\mathrm{Aut}(G)</math>. | <ul><li>Группа автоморфизмов: <math>\mathrm{Aut}(G)</math>. Пример: <math>\mathrm{Aut}((\mathbb Z/n)^+)\cong(\mathbb Z/n)^\times</math>. Группа внутренних автоморф.-в: <math>\mathrm{Inn}(G)=\{\bigl(x\mapsto g\,x\,g^{-1}\bigr)\!\mid g\in G\}\le\mathrm{Aut}(G)</math>. | ||
<li>Центр: <math>\mathrm Z(G)=\{g\in G\mid\forall\,x\in G\;\bigl(g\,x=x\,g\bigr)\}</math>. Теорема о внутренних автоморфизмах. Группа внешних автоморфизмов: <math>\mathrm{Out}(G)=\mathrm{Aut}(G)/\,\mathrm{Inn}(G)</math>. | <li>Центр: <math>\mathrm Z(G)=\{g\in G\mid\forall\,x\in G\;\bigl(g\,x=x\,g\bigr)\}</math>. Теорема о внутренних автоморфизмах. Группа внешних автоморфизмов: <math>\mathrm{Out}(G)=\mathrm{Aut}(G)/\,\mathrm{Inn}(G)</math>. |
Версия 20:00, 1 января 2018
Подробный план второй половины первого семестра курса алгебры
4 Кольца (часть 2)
4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммутат. кольце : ; ; .
- Утверждение: пусть — обл. цел.-сти, и ; тогда и . Обозн.-е в обл. цел.-сти.
- Наибольший относ.-но общий делитель и : ; наименьшее относ.-но общее кратное и : ; и опред.-ны с точностью до .
- Нормировка и (если они не ) в и : и — в , многочлены и нормированы — в .
- Главный идеал — идеал вида . Пример неглавн. идеала: в . Область главных идеалов — обл. цел.-сти, в которой все идеалы главные.
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) если идеал главный, то , и, если идеал главный, то ;
(3) если в кольце все идеалы главные, то и существуют, а также . - Неприводимые и простые эл.-ты: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если — область главных идеалов, то ;
(3) для любых следующие утверждения эквивалентны: (у1) и (у2) — область целостности;
(4) если — область главных идеалов, то для любых следующие утверждения эквивалентны: (у1) , (у2) ,
(у3) — область целостности и (у4) — поле.
4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма — такая функция , что относ.-но можно делить с остатком на ненул. эл.-ты и не убывает относ.-но на .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) в невозможна бесконечная строгая делимость (то есть в не существует такой бесконечной послед.-сти , что );
(3) если , то для любых выполнено ;
(4) — область главных идеалов (в частности, кольца и , где — поле, являются областями главных идеалов). - Факториальное кольцо — обл. цел.-сти с единств. (с точн.-ю до и перестановок) разложением любого ненул. эл.-та в произвед.-е неприводимых эл.-тов.
- Примеры: — факториальное кольцо (это основная теорема арифметики); если кольцо факториально, то и факториально (без доказательства).
- Теорема о факториальности евклидовых колец.
(1) Пусть — область целостности, в невозможна бесконечная строгая делимость и ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (в частности, кольца и , где — поле, являются факториальными кольцами). - Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) и ;
(2) и .
4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
- Соотношение Безу для эл.-тов и евклидова кольца: , где и — коэффициенты Безу. Нахождение в кольце .
- Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда, если , то .
- Расширенный алгоритм Евклида в евклидовом кольце: ; на -м шаге ; тогда .
- Китайская теорема об остатках для целых чисел. Пусть , и попарно взаимно просты (то есть
); тогда отображение — изоморфизм колец. - Китайская теорема об остатках для многочленов. Пусть — поле, , и попарно взаимно просты (то есть
); тогда отображение — изоморфизм колец. - Функция Эйлера от : . Пример: если и , то . Утверждение: .
- Теорема о свойствах функции Эйлера.
(1) Пусть , и ; тогда (это теорема Эйлера).
(2) Пусть и ; тогда .
(3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
; тогда .
4.4 Производная многочлена, интерполяция, рациональные дроби
- Производная многочлена: . Правило Лейбница. Пусть — кольцо и ; тогда .
- Корень кратности многочлена : (). Теорема о кратных корнях.
Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
(1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
(2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
(3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и . - Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный
такой многочлен , что и , и этот многочлен можно найти по следующим формулам:
(1) , где (это интерполяционная формула Лагранжа);
(2) , где и (это интерполяционная формула Ньютона). - Поле частных: , где и , .
- Теорема о поле частных. Отождествл.-е и . Примеры: , — поле рационал. дробей.
Теорема о поле частных. Пусть — область целостности; тогда отображение — инъективный гомоморфизм колец, а также
для любых и выполнено (и, значит, ). - Несократимая запись: (, нормир.). Приведение к несократ. записи. Правильная дробь: (). Выделение правил. дроби.
- Примарная дробь: (, нормир., , ). Простейшая дробь: (, нормир., , ).
- Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).
4.5 Матрицы, столбцы, строки
- Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
- Умножение матриц: . Внешняя ассоциативность умножения. Кольцо , группа .
- Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
- Столбцы, строки, матрицы с нулями и одной единицей: , , . Утверждение: , , .
- Строки матрицы : . Столбцы матрицы : . Утверждение: , а также .
- Операторы умн.-я на матрицу между и : — группа по сложению. Теорема об операторах умножения на матрицу.
Теорема об операторах умножения на матрицу. Пусть — кольцо и ; тогда
(1) — изоморфизм групп по сложению и, если , то это отобр.-е — изоморфизм колец;
(2) если — комм. кольцо, то
(то есть множество операторов умножения на матрицу между и совпадает с множеством линейных операторов между и ). - Транспонирование матрицы : . След квадратн. матрицы : . Линейность и . Теорема о свойствах транспонирования и следа.
Теорема о свойствах транспонирования и следа. Пусть — коммутативное кольцо и ; тогда
(1) для любых и выполнено и, если , то ;
(2) для любых выполнено , и для любых выполнено . - Симметричные и антисимм. матрицы: , .
5 Группы (часть 2)
5.1 Символ Леви-Чивиты и симметрические группы
- Транспозиции: (). Фундаментальные транспозиции: . Мн.-во инверсий: .
- Лемма о количестве инверсий. Пусть , , и ; тогда
(1) ;
(2) если , то , и, если , то . - Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа , упорядоченные
по неубыванию (то есть и ); тогда
(1) существуют такие фундаментальные транспозиции , что ;
(2) для любых из существования таких фундаментальных транспозиций , что ,
следует, что , а также в том случае, когда числа попарно различны, что . - Символ Леви-Чивиты: , если числа попарно различны; иначе . Пример: .
- Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: ; ().
Теорема о свойствах знака. Пусть ; тогда
(1) отображение — гомоморфизм групп и, если , то это сюръективный гомоморфизм групп;
(2) для любых и попарно различных чисел выполнено ;
(3) для любых выполнено , где — количество циклов четной длины в цикловой записи перестановки ;
(4) для любых и выполнено . - Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
неупорядоченные наборы длин циклов в цикловой записи перестановок и (то есть цикловые типы перестановок и ) равны. - Задание группы образующими и соотношениями: порождена образ.-ми с соотн.-ми инволютивности, локальности и кос (без док.-ва).
5.2 Определитель матрицы и группы матриц
- Определитель квадр. матрицы над коммут. кольцом: . Расстановки ладей и .
- Примеры: — ориентированная площадь, — ориентиров. объем. Лемма об определителе набора столбцов.
Лемма об определителе набора столбцов. Пусть — коммутативное кольцо, , и ; тогда
(1) ;
(2) если столбцы не попарно различны, то ;
(3) для любых выполнено . - Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
(1) — гомоморфизм моноидов по умножению, а также (доказ.-во только );
(2) для любых и выполнено , а также ;
(3) для любых выполнено ;
(4) для любых , , и выполнено . - Специальная линейная группа: . Геом. смысл: сохраняет ориент. объем.
- Аффинная линейная группа: . Геометрический смысл: .
- Ортогональная группа: . Специальная ортогонал. группа: .
- Унитарная группа: . Специальная унитарная группа: .
- Изометрии в : (доказ.-во только ). Теорема о комплексных числах и вещественных матрицах.
Теорема о комплексных числах и вещественных матрицах. Отображение — изоморфизм колец, и
, а также отображение — изоморфизм групп.
5.3 Действия групп на множествах
- Действие группы на множ.-ве — гомоморфизм моноидов . Утверждение: . Обозначение: .
- Примеры: действует на , группы матриц действуют на , группа действует на (где ) умножением слева и на сопряжением.
- Теорема Кэли. Точное действие: — инъекция. Динамическая система с дискретнымнепрерывным временем — мн.-во с действием группы .
Теорема Кэли. Пусть — группа; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
(2) отображение — инъективный гомоморфизм групп. - -Множество — множество с действием группы . Гомоморфизмы -множеств: .
- Орбита точки : (, где ). Множество орбит: — разбиение мн.-ва .
- Транзитивное действие ( — однородное -мн.-во): . Стабилизатор: . Стабилизаторы платоновых тел в .
- Свободное действие ( — свободное -мн.-во): . Торсор — однородное свободное -мн.-во: .
- Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .
Теорема о классах смежности по стабилизатору. Пусть — группа, — -множество и ; тогда
(1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть ;
(2) если , то (и, значит, делит ).Лемма Бернсайда. Пусть — группа, — -множество и ; тогда .
5.4 Автоморфизмы, коммутант, полупрямое произведение групп
- Группа автоморфизмов: . Пример: . Группа внутренних автоморф.-в: .
- Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморфизмов: .
Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
его образ есть (и, значит, ) и, кроме того, . - Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
- Утверждение: . Теорема о коммутанте. Пример: (доказ.-во только включения ). Абелианизация группы : .
Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).
- Простая группа: . Примеры: группы (), ( — поле, ), простые (без доказ.-ва).
- Полупрямое произвед.-е относ.-но действия (): с бинарной операцией .
- Утверждение: — гомоморфизм групп. Пример: , где .
- Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то в пункте (2) условие "" можно заменить на условие "".