Алгебра phys 1 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 52: Строка 52:
 
<p><u>Теорема об операторах умножения на матрицу.</u> <i>Пусть <math>R</math> — кольцо и <math>n,p\in\mathbb N_0</math>; тогда<br>(1) <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,R)&\to\{\bigl(v\mapsto a\cdot v\bigr)\!\mid a\in\mathrm{Mat}(p,n,R)\}\\a&\mapsto\bigl(v\mapsto a\cdot v\bigr)\end{align}\!\biggr)</math> — изоморфизм групп по сложению и, если <math>n=p</math>, то это отобр.-е — изоморфизм колец;<br>(2) если <math>R</math> — комм. кольцо, то <math>\{\bigl(v\mapsto a\cdot v\bigr)\!\mid a\in\mathrm{Mat}(p,n,R)\}=\{a\in\mathrm{Map}(R^n,R^p)\mid\forall\,v,v'\!\in R^n,\,c,c'\!\in R\;\bigl(a(c\,v+c'v')=c\,a(v)+c'a(v')\bigr)\}</math><br>(то есть множество операторов умножения на матрицу между <math>R^n</math> и <math>R^p</math> совпадает с множеством линейных операторов между <math>R^n</math> и <math>R^p</math>).</i></p>
 
<p><u>Теорема об операторах умножения на матрицу.</u> <i>Пусть <math>R</math> — кольцо и <math>n,p\in\mathbb N_0</math>; тогда<br>(1) <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,R)&\to\{\bigl(v\mapsto a\cdot v\bigr)\!\mid a\in\mathrm{Mat}(p,n,R)\}\\a&\mapsto\bigl(v\mapsto a\cdot v\bigr)\end{align}\!\biggr)</math> — изоморфизм групп по сложению и, если <math>n=p</math>, то это отобр.-е — изоморфизм колец;<br>(2) если <math>R</math> — комм. кольцо, то <math>\{\bigl(v\mapsto a\cdot v\bigr)\!\mid a\in\mathrm{Mat}(p,n,R)\}=\{a\in\mathrm{Map}(R^n,R^p)\mid\forall\,v,v'\!\in R^n,\,c,c'\!\in R\;\bigl(a(c\,v+c'v')=c\,a(v)+c'a(v')\bigr)\}</math><br>(то есть множество операторов умножения на матрицу между <math>R^n</math> и <math>R^p</math> совпадает с множеством линейных операторов между <math>R^n</math> и <math>R^p</math>).</i></p>
 
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. След квадратн. матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Линейность <math>{}^\mathtt T</math> и <math>\mathrm{tr}</math>. Теорема о свойствах транспонирования и следа.
 
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. След квадратн. матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Линейность <math>{}^\mathtt T</math> и <math>\mathrm{tr}</math>. Теорема о свойствах транспонирования и следа.
<p><u>Теорема о свойствах транспонирования и следа.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n,p,r\in\mathbb N_0</math>; тогда<br>(1) для любых <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math> выполнено <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math> и, если <math>n=r</math>, то <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math>;<br>(2) для любых <math>a\in\mathrm{GL}(n,R)</math> выполнено <math>(a^{-1})^\mathtt T\!=(a^\mathtt T)^{-1}</math>, и для любых <math>v,w\in R^n</math> выполнено <math>v^\mathtt T\!\cdot w=\mathrm{tr}(v\cdot w^\mathtt T)=v^1w^1+\ldots+v^nw^n</math>.</i></p>
+
<p><u>Теорема о свойствах транспонирования и следа.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n,p,r\in\mathbb N_0</math>; тогда<br>(1) для любых <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math> выполнено <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math> и, если <math>n=r</math>, то <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math>;<br>(2) для любых <math>a\in\mathrm{GL}(n,R)</math> выполнено <math>(a^{-1})^\mathtt T\!=(a^\mathtt T)^{-1}</math>, и для любых <math>v,w\in R^n</math> выполнено <math>v^\mathtt T\!\cdot w=\mathrm{tr}(v\cdot w^\mathtt T)=v^1\,w^1+\ldots+v^n\,w^n</math>.</i></p>
 
<li>Симметричные и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math>, <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.</ul>
 
<li>Симметричные и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math>, <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.</ul>
  
Строка 65: Строка 65:
 
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это сюръективный гомоморфизм групп;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
 
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это сюръективный гомоморфизм групп;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
<li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказ.-ва). Пример: <math>\mathrm S_4\cong\langle d_1,d_2,d_3\!\mid d_1^2,d_2^2,d_3^2,(d_1d_2)^3,(d_2d_3)^3,(d_1d_3)^2\rangle</math>.</ul>
+
<li>Задание группы <math>\mathrm S_n</math> образующими и соотношениями: <math>\mathrm S_n</math> порождена образ.-ми <math>d_1,\ldots,d_{n-1}</math> с соотн.-ми инволютивности, локальности и кос (без док.-ва).</ul>
  
 
<h5>1.5.2&nbsp; Определитель матрицы и группы матриц</h5>
 
<h5>1.5.2&nbsp; Определитель матрицы и группы матриц</h5>
Строка 99: Строка 99:
 
<li>Утверждение: <math>[G,G]\trianglelefteq G</math>. Теорема о коммутанте. Пример: <math>[\mathrm S_n,\mathrm S_n]=\mathrm A_n</math> (док.-во только включения <math>\subseteq</math>). Абелианизация группы <math>G</math>: <math>G^\mathtt{ab}\!=G/[G,G]</math>.
 
<li>Утверждение: <math>[G,G]\trianglelefteq G</math>. Теорема о коммутанте. Пример: <math>[\mathrm S_n,\mathrm S_n]=\mathrm A_n</math> (док.-во только включения <math>\subseteq</math>). Абелианизация группы <math>G</math>: <math>G^\mathtt{ab}\!=G/[G,G]</math>.
 
<p><u>Теорема о коммутанте.</u> <i>Пусть <math>G</math> — группа и <math>H\trianglelefteq G</math>; тогда группа <math>G/H</math> абелева, если и только если <math>[G,G]\subseteq H</math> (и, значит, <math>G/[G,G]</math> абелева).</i></p>
 
<p><u>Теорема о коммутанте.</u> <i>Пусть <math>G</math> — группа и <math>H\trianglelefteq G</math>; тогда группа <math>G/H</math> абелева, если и только если <math>[G,G]\subseteq H</math> (и, значит, <math>G/[G,G]</math> абелева).</i></p>
<li>Простая группа: <math>|\{H\subseteq G\mid H\trianglelefteq G\}|=2</math>. Примеры: группы <math>\mathrm A_n</math> (<math>n\ge5</math>), <math>\mathrm{SO}(3)</math>, <math>\mathrm{SL}(2,K)/\{\mathrm{id}_2,-\mathrm{id}_2\}</math> (<math>K</math> — поле, <math>|K|\ge4</math>) простые (без доказ.-ва).
+
<li>Простая группа: <math>|\{H\subseteq G\mid H\trianglelefteq G\}|=2</math>. Примеры: группы <math>\mathrm A_n</math> (<math>n\ge5</math>), <math>\mathrm{SL}(2,K)/\{\mathrm{id}_2,-\mathrm{id}_2\}</math> (<math>K</math> — поле, <math>|K|\ge4</math>), <math>\mathrm{SO}(3)</math> простые (без доказ.-ва).
<li>Полупрямое произвед.-е <math>F\;\underset\pi\leftthreetimes\,H</math> относ.-но действия <math>\pi</math> (<math>\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))</math>): <math>F\times H</math> с бинарной операцией <math>(f_1,h_1)\,(f_2,h_2)=(f_1\,\pi_{h_1}\!(f_2),h_1\,h_2)</math>.
+
<li>Полупрямое произвед.-е <math>F\underset\pi\leftthreetimes H</math> относ.-но действия <math>\pi</math> (<math>\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))</math>): <math>F\times H</math> с бинарной операцией <math>(f_1,h_1)\,(f_2,h_2)=(f_1\,\pi_{h_1}\!(f_2),h_1\,h_2)</math>.
<li>Утверждение: <i><math>\biggl(\!\begin{align}F\;\underset\pi\leftthreetimes\,H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизм групп</i>. Пример: <math>\mathrm{AGL}(n,K)\cong(K^n)^+\,\underset\pi\leftthreetimes\,\mathrm{GL}(n,K)</math>, где <math>\,\forall\,a\in\mathrm{GL}(n,K),\,z\in K^n\,\bigl(\pi_a(z)=a\cdot z\bigr)</math>.
+
<li>Утверждение: <i><math>\biggl(\!\begin{align}F\underset\pi\leftthreetimes H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизм групп</i>. Пример: <math>\mathrm{AGL}(n,K)\cong(K^n)^+\underset\pi\leftthreetimes\mathrm{GL}(n,K)</math>, где <math>\,\forall\,a\in\mathrm{GL}(n,K),\,z\in K^n\,\bigl(\pi_a(z)=a\cdot z\bigr)</math>.
<li><u>Теорема о полупрямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Hom}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Iso}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то в пункте (2) условие "<math>G=FH\!</math>" можно заменить на условие "<math>|G|=|F|\,|H|\!</math>".</i></ul>
+
<li><u>Теорема о полупрямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Hom}(F\underset\pi\leftthreetimes H,G)\bigr)\Leftrightarrow\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Iso}(F\underset\pi\leftthreetimes H,G)\bigr)\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то в пункте (2) условие "<math>\,G=FH</math>" можно заменить на условие "<math>\,|G|=|F|\,|H|</math>".</i></ul>

Версия 08:00, 30 ноября 2017

1  Основы алгебры

1.4  Кольца (часть 2)

1.4.1  Делимость в коммутативных кольцах
  • Делимость, строгая делимость, ассоциированность в коммутат. кольце : ; ; .
  • Утверждение: пусть — обл. цел.-сти, и ; тогда и . Обозн.-е в обл. цел.-сти.
  • Наибольший относ.-но общий делитель и : ; наименьшее относ.-но общее кратное и : ; и опред.-ны с точностью до .
  • Нормировка и (если они не ) в и : и — в , многочлены и нормированы — в .
  • Главный идеал — идеал вида . Пример неглавн. идеала: в . Область главных идеалов — обл. цел.-сти, в которой все идеалы главные.
  • Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
    (1) ; ; ; ;
    (2) если идеал главный, то , и, если идеал главный, то ;
    (3) если в кольце все идеалы главные, то и существуют, а также .
  • Неприводимые и простые эл.-ты: и .
  • Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
    (1) если — область целостности, то ;
    (2) если — область главных идеалов, то ;
    (3) для любых следующие утверждения эквивалентны: (у1) и (у2) — область целостности;
    (4) если — область главных идеалов, то для любых следующие утверждения эквивалентны: (у1) , (у2) ,
    (у3) — область целостности и (у4) — поле.
1.4.2  Евклидовы кольца и факториальные кольца
  • Евклидова норма — такая функция , что относ.-но можно делить с остатком на ненул. эл.-ты и не убывает относ.-но на .
  • Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
  • Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
    (1) для любых и выполнено ;
    (2) в невозможна бесконечная строгая делимость (то есть в не существует такой бесконечной послед.-сти , что );
    (3) если , то для любых выполнено ;
    (4) — область главных идеалов (в частности, кольца и , где — поле, являются областями главных идеалов).
  • Факториальное кольцо — обл. цел.-сти с единств. (с точн.-ю до и перестановок) разложением любого ненул. эл.-та в произвед.-е неприводимых эл.-тов.
  • Примеры: — факториальное кольцо (это основная теорема арифметики); если кольцо факториально, то и факториально (без доказательства).
  • Теорема о факториальности евклидовых колец.
    (1) Пусть — область целостности, в невозможна бесконечная строгая делимость и ; тогда — факториальное кольцо.
    (2) Евклидовы кольца являются факториальными кольцами (в частности, кольца и , где — поле, являются факториальными кольцами).
  • Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
    и , где , , попарно неассоциированы и ; тогда
    (1) и ;
    (2) и .
1.4.3  Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
  • Соотношение Безу для эл.-тов и евклидова кольца: , где и — коэффициенты Безу. Нахождение в кольце .
  • Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда, если , то .
  • Расширенный алгоритм Евклида в евклидовом кольце: ; на -м шаге ; тогда .
  • Китайская теорема об остатках для целых чисел. Пусть , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Китайская теорема об остатках для многочленов. Пусть — поле, , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Функция Эйлера от : . Пример: если и , то . Утверждение: .
  • Теорема о свойствах функции Эйлера.
    (1) Пусть , и ; тогда (это теорема Эйлера).
    (2) Пусть и ; тогда .
    (3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
    ; тогда .
1.4.4  Производная многочлена, интерполяция, рациональные дроби
  • Производная многочлена: . Правило Лейбница. Пусть — кольцо и ; тогда .
  • Корень кратности многочлена : (). Теорема о кратных корнях.

    Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
    (1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
    (2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
    (3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и .

  • Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный
    такой многочлен , что и , и этот многочлен можно найти по следующим формулам:
    (1) , где (это интерполяционная формула Лагранжа);
    (2) , где и (это интерполяционная формула Ньютона).
  • Поле частных: , где и , .
  • Теорема о поле частных. Отождествл.-е и . Примеры: , — поле рационал. дробей.

    Теорема о поле частных. Пусть — область целостности; тогда отображение — инъективный гомоморфизм колец, а также
    для любых и выполнено (и, значит, ).

  • Несократимая запись: (, нормир.). Приведение к несократ. записи. Правильная дробь: (). Выделение правил. дроби.
  • Примарная дробь: (, нормир., , ). Простейшая дробь: (, нормир., , ).
  • Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).
1.4.5  Матрицы, столбцы, строки
  • Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
  • Умножение матриц: . Внешняя ассоциативность умножения. Кольцо , группа .
  • Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
  • Столбцы, строки, матрицы с нулями и одной единицей: , , . Утверждение: , , .
  • Строки матрицы : . Столбцы матрицы : . Утверждение: , а также .
  • Операторы умн.-я на матрицу между и : — группа по сложению. Теорема об операторах умножения на матрицу.

    Теорема об операторах умножения на матрицу. Пусть — кольцо и ; тогда
    (1) — изоморфизм групп по сложению и, если , то это отобр.-е — изоморфизм колец;
    (2) если — комм. кольцо, то
    (то есть множество операторов умножения на матрицу между и совпадает с множеством линейных операторов между и ).

  • Транспонирование матрицы : . След квадратн. матрицы : . Линейность и . Теорема о свойствах транспонирования и следа.

    Теорема о свойствах транспонирования и следа. Пусть — коммутативное кольцо и ; тогда
    (1) для любых и выполнено и, если , то ;
    (2) для любых выполнено , и для любых выполнено .

  • Симметричные и антисимм. матрицы: , .

1.5  Группы (часть 2)

1.5.1  Символ Леви-Чивиты и симметрические группы
  • Транспозиции: (, ). Фундаментальные транспозиции: (). Число циклов в перестановке : .
  • Множество инверсий последовательности : . Лемма о количестве инверсий.

    Лемма о количестве инверсий. Пусть , , и ; тогда
    (1) ;
    (2) если , то , и, если , то .

  • Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа ,
    упорядоченные по неубыванию (то есть ); тогда
    (1) существуют такие фундаментальные транспозиции , что ;
    (2) для любых из существования таких фундаментальных транспозиций , что ,
    следует, что , а также в том случае, когда числа попарно различны, что .
  • Символ Леви-Чивиты: , если числа попарно различны; иначе . Пример: .
  • Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: ; ().

    Теорема о свойствах знака. Пусть ; тогда
    (1) отображение — гомоморфизм групп и, если , то это сюръективный гомоморфизм групп;
    (2) для любых таких , что , выполнено и ;
    (3) для любых и попарно различных чисел выполнено ;
    (4) для любых выполнено .

  • Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
    (неупорядоченные) наборы длин циклов перестановок и (то есть цикловые типы перестановок и ) равны.
  • Задание группы образующими и соотношениями: порождена образ.-ми с соотн.-ми инволютивности, локальности и кос (без док.-ва).
1.5.2  Определитель матрицы и группы матриц
  • Определитель квадр. матрицы над коммут. кольцом: . Расстановки ладей и .
  • Примеры: — ориентированная площадь, — ориентиров. объем. Теорема об определителе набора столбцов.

    Теорема об определителе набора столбцов. Пусть — коммутативное кольцо, , и ; тогда
    (1) ;
    (2) если столбцы не попарно различны, то ;
    (3) для любых выполнено .

  • Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
    (1) отображение — гомоморфизм моноидов по умножению;
    (2) (доказ.-во только включения ) и для любых выполнено ;
    (3) для любых выполнено ;
    (4) для любых , , и выполнено .
  • Специальная линейная группа: . Геом. смысл: .
  • Аффинная линейная группа: . Геометрический смысл: .
  • Ортогональная группа: . Специальная ортогонал. группа: .
  • Унитарная группа: . Специальная унитарная группа: .
  • Изометрии в : (доказ.-во только ). Теорема о комплексных числах и вещественных матрицах.

    Теорема о комплексных числах и вещественных матрицах. Отображение — изоморфизм колец, а также
    и отображение — изоморфизм групп.

1.5.3  Действия групп на множествах
  • Действие группы на мн.-ве — гомоморфизм моноидов . Утверждение: . Обозначение: .
  • Примеры: группа действует на , группы матриц действуют на , группа действует на сдвигами (где ) и на сопряжениями.
  • Теорема Кэли для групп. Динамическая система с дискретнымнепрерывным временем (каскадпоток) — мн.-во с действием группы группы .

    Теорема Кэли для групп. Пусть — группа; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
    (2) отображение — инъективный гомоморфизм групп.

  • -Множество — множество с действием группы . Гомоморфизмы -множеств: .
  • Орбита точки : (, где ). Разбиение -множества на орбиты: .
  • Транзитивное действие (однородное -мн.-во): . Стабилизатор: . Точное действие: .
  • Свободное действие (свободное -мн.-во): . Торсор над — однородн. свободн. -мн.-во ().
  • Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .

    Теорема о классах смежности по стабилизатору. Пусть — группа, -множество и ; тогда
    (1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть ;
    (2) если , то .

    Лемма Бернсайда. Пусть — группа, -множество и ; тогда .

1.5.4  Автоморфизмы, коммутант, полупрямое произведение групп
  • Группа автоморфизмов: . Пример: . Группа внутренних автоморф.-в: .
  • Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморфизмов: .

    Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
    его образ есть (и, значит, ) и, кроме того, .

  • Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
  • Утверждение: . Теорема о коммутанте. Пример: (док.-во только включения ). Абелианизация группы : .

    Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).

  • Простая группа: . Примеры: группы (), ( — поле, ), простые (без доказ.-ва).
  • Полупрямое произвед.-е относ.-но действия (): с бинарной операцией .
  • Утверждение: — гомоморфизм групп. Пример: , где .
  • Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".