Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 19: Строка 19:
 
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>, имеем<br>следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\overline{\mathrm{Bi}}(V)&\to\overline{\mathrm{Quad}}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>, имеем<br>следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\overline{\mathrm{Bi}}(V)&\to\overline{\mathrm{Quad}}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
<li>Примеры гиперповерхностей. Утверждение: <i>пусть <math>s\in\mathrm{Mat}(n,K)</math>, <math>\lambda\in K_n</math>, <math>c\in K</math> и <math>v\in K^n</math>; тогда <math>\,v^\mathtt T\!\cdot s\cdot v+2\,\lambda\cdot v+c=\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)^{\!\mathtt T}\!\!\cdot\!\Bigl(\begin{smallmatrix}c&\lambda\\\lambda^\mathtt T&s\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)</math></i>.</ul>
+
<li>Примеры гиперповерхностей. Утверждение: <i>пусть <math>s\in\mathrm{Mat}(n,K)</math>, <math>\lambda\in K_n</math>, <math>c\in K</math> и <math>v\in K^n</math>; тогда <math>\,v^\mathtt T\!\cdot s\cdot v+2\,\lambda\cdot v+c=\Bigl(\begin{smallmatrix}v\\1\end{smallmatrix}\Bigr)^{\!\mathtt T}\!\!\cdot\!\Bigl(\begin{smallmatrix}s&\lambda^\mathtt T\\\lambda&c\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}v\\1\end{smallmatrix}\Bigr)</math></i>.</ul>
  
 
<h5>3.1.3&nbsp; Музыкальные изоморфизмы и невырожденные ¯-билинейные формы</h5>
 
<h5>3.1.3&nbsp; Музыкальные изоморфизмы и невырожденные ¯-билинейные формы</h5>
Строка 60: Строка 60:
 
<li>Норма: <math>\|v\|=\!\sqrt{(v\!\mid\!v)}</math>. Утверждение: <i><math>v\ne0\,\Rightarrow\,\|v\|>0</math> и <math>\|c\,v\|=|c|\,\|v\|</math></i>. Гильбертово пространство — полное предгильбертово пр.-во. Пример: <math>\ell^2</math>.
 
<li>Норма: <math>\|v\|=\!\sqrt{(v\!\mid\!v)}</math>. Утверждение: <i><math>v\ne0\,\Rightarrow\,\|v\|>0</math> и <math>\|c\,v\|=|c|\,\|v\|</math></i>. Гильбертово пространство — полное предгильбертово пр.-во. Пример: <math>\ell^2</math>.
 
<li><u>Теорема о свойствах нормы.</u> <i>Пусть <math>V</math> — предгильбертово пространство; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>|(v\!\mid\!w)|\le\|v\|\,\|w\|</math> (это неравенство Коши–Буняковского–Шварца);<br>(2) для любых <math>v,w\in V</math> выполнено <math>\|v+w\|\le\|v\|+\|w\|</math> (это неравенство треугольника);<br>(3) если <math>\dim V<\infty</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> и <math>v\in V</math> выполнено <math>v=\!\sum_{i=1}^{\dim V}\!(v\!\mid\!e_i)\,e_i</math> и <math>\|v\|^2=\!\sum_{i=1}^{\dim V}\!|(v\!\mid\!e_i)|^2</math> (это равенство Парсеваля).</i>
 
<li><u>Теорема о свойствах нормы.</u> <i>Пусть <math>V</math> — предгильбертово пространство; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>|(v\!\mid\!w)|\le\|v\|\,\|w\|</math> (это неравенство Коши–Буняковского–Шварца);<br>(2) для любых <math>v,w\in V</math> выполнено <math>\|v+w\|\le\|v\|+\|w\|</math> (это неравенство треугольника);<br>(3) если <math>\dim V<\infty</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> и <math>v\in V</math> выполнено <math>v=\!\sum_{i=1}^{\dim V}\!(v\!\mid\!e_i)\,e_i</math> и <math>\|v\|^2=\!\sum_{i=1}^{\dim V}\!|(v\!\mid\!e_i)|^2</math> (это равенство Парсеваля).</i>
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Теорема об ортогональном проектировании. Расст.между вектором и подпр.-вом: <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>.
+
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Расст. между подмн.-вами: <math>\mathrm{dist}(X,Y)=\inf\,\{\mathrm{dist}(x,y)\mid x\in X,\,y\in Y\}</math>. Теорема о расстояниях и проектировании.
<p><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U\le V</math> и <math>\dim U<\infty</math>; тогда<br>(1) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\mathrm{dist}(v,\mathrm{proj}_U(v))<\mathrm{dist}(v,u)</math> (и, значит, <math>\mathrm{dist}(v,\mathrm{proj}_U(v))=\min\{\mathrm{dist}(v,u)\mid u\in U\}</math>);<br>(2) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя).</i></p>
+
<p><u>Теорема о расстояниях и проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U,U'\le V</math> и <math>\dim U,\dim U'<\infty</math>; тогда<br>(1) для любых <math>v\in V</math> выполнено <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>;<br>(2) для любых <math>v,v'\in V</math> выполнено <math>\mathrm{dist}(v+U,v'+U')=\mathrm{dist}(v-v',U+U')</math>;<br>(3) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя).</i></p>
 
<li>Метод наименьших квадратов: замена системы <math>a\cdot v=y</math>, где <math>a\in\mathrm{Mat}(p,n,\mathbb R)</math>, <math>\mathrm{rk}(a)=n</math> и <math>y\notin\{a\cdot v\mid v\in\mathbb R^n\}=X</math>, на систему <math>a\cdot v=\mathrm{proj}_X(y)</math>.
 
<li>Метод наименьших квадратов: замена системы <math>a\cdot v=y</math>, где <math>a\in\mathrm{Mat}(p,n,\mathbb R)</math>, <math>\mathrm{rk}(a)=n</math> и <math>y\notin\{a\cdot v\mid v\in\mathbb R^n\}=X</math>, на систему <math>a\cdot v=\mathrm{proj}_X(y)</math>.
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.
Строка 76: Строка 76:
 
<li>Примеры: <math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, <math>\mathrm O(2)=\mathrm{SO}(2)\cup\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&\sin\varphi\\\sin\varphi&-\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, <math>\mathrm{SU}(2)=\bigl\{\Bigl(\begin{smallmatrix}a&b\\-\overline b&\overline a\end{smallmatrix}\Bigr)\!\mid a,b\in\mathbb C,\,|a|^2\!+|b|^2\!=1\bigr\}</math>.
 
<li>Примеры: <math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, <math>\mathrm O(2)=\mathrm{SO}(2)\cup\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&\sin\varphi\\\sin\varphi&-\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math>, <math>\mathrm{SU}(2)=\bigl\{\Bigl(\begin{smallmatrix}a&b\\-\overline b&\overline a\end{smallmatrix}\Bigr)\!\mid a,b\in\mathbb C,\,|a|^2\!+|b|^2\!=1\bigr\}</math>.
 
<li>Группа изометрий предгильбертова пр.-ва: <math>\mathrm{Isom}(V)=\{a\in\mathrm{Bij}(V)\mid\forall\,v,w\in V\;\bigl(\mathrm{dist}(a(v),a(w))=\mathrm{dist}(v,w)\bigr)\}</math>. Теорема об описании изометрий.
 
<li>Группа изометрий предгильбертова пр.-ва: <math>\mathrm{Isom}(V)=\{a\in\mathrm{Bij}(V)\mid\forall\,v,w\in V\;\bigl(\mathrm{dist}(a(v),a(w))=\mathrm{dist}(v,w)\bigr)\}</math>. Теорема об описании изометрий.
<p><u>Теорема об описании изометрий.</u> <i>Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math>; тогда<br>(1) <math>\{a\in\mathrm{Isom}(V)\mid a(0)=0\}=\mathrm O(V)</math>;<br>(2) обозначая через <math>G</math>, <math>F</math> и <math>H</math> группу <math>\,\mathrm{Isom}(V)</math> и ее подгруппы <math>\{\bigl(v\mapsto v+v_0\bigr)\mid v_0\in V\}</math> и <math>\{a\in\mathrm{Isom}(V)\mid a(0)=0\}</math> соответственно, имеем<br>следующие факты: <math>F\cap H=\{\mathrm{id}_V\}</math>, <math>G=F\circ H</math> и <math>\forall\,h\in H\;\bigl(h\circ F\circ h^{-1}\!\subseteq F\bigr)</math>, а также <math>F\cong V^+\!</math> (и, значит, <math>\mathrm{Isom}(V)\cong V^+\!\leftthreetimes\mathrm O(V)</math>).</i></p></ul>
+
<p><u>Теорема об описании изометрий.</u> <i>Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math>; тогда<br>(1) <math>\{a\in\mathrm{Isom}(V)\mid a(0)=0\}=\mathrm O(V)</math>;<br>(2) обозначая через <math>G</math>, <math>F</math> и <math>H</math> группу <math>\,\mathrm{Isom}(V)</math> и ее подгруппы <math>\{\bigl(v\mapsto v+z\bigr)\!\mid z\in V\}</math> и <math>\{a\in\mathrm{Isom}(V)\mid a(0)=0\}</math> соответственно, имеем<br>следующие факты: <math>F\cap H=\{\mathrm{id}_V\}</math>, <math>G=F\circ H</math> и <math>\forall\,h\in H\;\bigl(h\circ F\circ h^{-1}\!\subseteq F\bigr)</math>, а также <math>F\cong V^+\!</math> (и, значит, <math>\mathrm{Isom}(V)\cong V^+\!\leftthreetimes\mathrm O(V)</math>).</i></p></ul>
  
 
<h5>3.3.2&nbsp; Симметричные, антисимметричные, положительно определенные и нормальные операторы</h5>
 
<h5>3.3.2&nbsp; Симметричные, антисимметричные, положительно определенные и нормальные операторы</h5>

Версия 00:00, 14 октября 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Теорема об определителе матрицы Грама. Пусть — поле с инволюцией, — векторное пространство над полем , , ,
    , , и , а также форма невырождена; обозначим через
    вектор ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Геометрия в векторных пространствах над или (часть 1)

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
    (1) если и , то и, если , то форма невырождена и ;
    (2) если , то , если и только если ;
    (3) если и , то , если и только если .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.

    Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых выполнено ;
    (2) для любых выполнено ;
    (3) для любых и выполнено и (это неравенство Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .

3.3  Линейные операторы и ¯-билинейные формы

3.3.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (3) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

3.3.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов (, или ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , а также и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
    и ; тогда , а также и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и ;
    (3) если и или , то .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
3.3.3  Спектральная теория в унитарных пространствах
  • Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
    для любых выполнено , а также для любых таких , что , выполнено .
  • Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Ортогональный проектор: . Спектральное разложение нормального оператора : .
  • Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.
    (1) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , , а также
    для любых двух различных собственных чисел и оператора выполнено .
    (2) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , а также для любых двух различных
    собственных чисел и оператора выполнено .
  • Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
3.3.4  Спектральная теория в евклидовых пространствах
  • -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
  • -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
  • Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
    (1) существует такое подпространство пространства , что , и, если , то ;
    (2) если , то для любых выполнено .
  • Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Усиленная теорема Лагранжа для евклидовых и унитарных пространств. Пусть — евклидово или унитарное пространство и ; тогда
    существует такой , что — диагональная матрица (то есть ).
  • Теорема Эйлера о вращениях. Пусть — ориентированное евклидово пространство, и ; тогда существуют такие
    и , что (и, значит, — оператор поворота вокруг оси на угол ).