Алгебра phys 2 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 2: Строка 2:
 
<h2>3&nbsp; Билинейная и полилинейная алгебра</h2>
 
<h2>3&nbsp; Билинейная и полилинейная алгебра</h2>
 
<table cellpadding="6" cellspacing="0">
 
<table cellpadding="6" cellspacing="0">
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr>
+
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>In the 20th century, the subject came to be known as <i>tensor analysis</i>, and achieved broader acceptance with the introduction of Einstein's<br>theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about<br>them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct<br>mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:<br>"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while<br>the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).</td></tr><tr align="right"><td>[https://en.wikipedia.org/wiki/Tensor<i>Статья «Tensor» в англоязычной Википедии</i>]</td></tr></table></td></tr></table>
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>In the 20th century, the subject came to be known as <i>tensor analysis</i>, and achieved broader acceptance with the introduction of Einstein's the-<br>ory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about them,<br>with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct mistakes<br>Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect: "I admire<br>the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of<br>us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).</td></tr><tr align="right"><td>[https://en.wikipedia.org/wiki/Tensor<i>Статья «Tensor» в англоязычной Википедии</i>]</td></tr></table></td></tr></table>
+
  
 
<h3>3.4&nbsp; Тензорные произведения векторных пространств</h3>
 
<h3>3.4&nbsp; Тензорные произведения векторных пространств</h3>
 
<h5>3.4.1&nbsp; Определения, конструкции и основные теоремы, связанные с тензорами</h5>
 
<h5>3.4.1&nbsp; Определения, конструкции и основные теоремы, связанные с тензорами</h5>
<ul><li>Тензорное произв.-е пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации.
+
<ul><li>Тензорное произведение пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации.
<li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0\in\mathcal F/\mathcal F_0</math>. Утверждение: <math>V_1\otimes\ldots\otimes V_k=\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\rangle</math>.
+
<li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0\in\mathcal F/\mathcal F_0</math>. Утверждение: <math>V_1\otimes\ldots\otimes V_k=\bigl\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\bigr\rangle</math>.
<li>Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> равен минимальному среди всех таких чисел <math>m\in\mathbb N_0</math>, что <math>T=T_1+\ldots+T_m</math>, где <math>T_1,\ldots,T_m</math> — разложимые тензоры.
+
<li><u>Теорема об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k,Y</math> — векторные пространства над полем <math>K</math>; тогда<br>отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> — полилинейный оператор, и для любых <math>\omega\in\mathrm{Multi}(V_1,\ldots,V_k,Y)</math> существует единственный<br>такой линейный оператор <math>a\in\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)</math>, что для любых <math>v_1\in V_1,\ldots,v_k\in V_k</math> выполнено <math>a(v_1\otimes\ldots\otimes v_k)=\omega(v_1,\ldots,v_k)</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)&\to\mathrm{Multi}(V_1,\ldots,V_k,Y)\\a&\mapsto\bigl((v_1,\ldots,v_k)\mapsto a(v_1\otimes\ldots\otimes v_k)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств).</i>
<li><u>Теорема об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k,Y</math> — векторные пространства над полем <math>K</math>;<br>тогда отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> полилинейно, и для любых <math>\omega\in\mathrm{Multi}(V_1,\ldots,V_k,Y)</math> существует единственный<br>такой гомоморфизм <math>a\in\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)</math>, что для любых <math>v_1\in V_1,\ldots,v_k\in V_k</math> выполнено <math>a(v_1\otimes\ldots\otimes v_k)=\omega(v_1,\ldots,v_k)</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)&\to\mathrm{Multi}(V_1,\ldots,V_k,Y)\\a&\mapsto\bigl((v_1,\ldots,v_k)\mapsto a(v_1\otimes\ldots\otimes v_k)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств).</i>
+
 
<li><u>Теорема о базисе тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math>, <math>V_1,\ldots,V_k</math> — векторные пространства над полем <math>K</math> и <math>B_1,\ldots,B_k</math> —<br>базисы пространств <math>V_1,\ldots,V_k</math> соответственно; тогда все тензоры <math>b_1\otimes\ldots\otimes b_k</math>, где <math>b_1\in B_1,\ldots,b_k\in B_k</math>, попарно различны и вместе<br>образуют базис пространства <math>V_1\otimes\ldots\otimes V_k</math>, а также, если <math>\dim V_1,\ldots,\dim V_k<\infty</math>, то <math>\dim(V_1\otimes\ldots\otimes V_k)=\dim V_1\cdot\ldots\cdot\dim V_k</math>.</i>
 
<li><u>Теорема о базисе тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math>, <math>V_1,\ldots,V_k</math> — векторные пространства над полем <math>K</math> и <math>B_1,\ldots,B_k</math> —<br>базисы пространств <math>V_1,\ldots,V_k</math> соответственно; тогда все тензоры <math>b_1\otimes\ldots\otimes b_k</math>, где <math>b_1\in B_1,\ldots,b_k\in B_k</math>, попарно различны и вместе<br>образуют базис пространства <math>V_1\otimes\ldots\otimes V_k</math>, а также, если <math>\dim V_1,\ldots,\dim V_k<\infty</math>, то <math>\dim(V_1\otimes\ldots\otimes V_k)=\dim V_1\cdot\ldots\cdot\dim V_k</math>.</i>
 +
 +
<li>Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> равен минимальному среди всех таких чисел <math>m\in\mathbb N_0</math>, что <math>T=T_1+\ldots+T_m</math>, где <math>T_1,\ldots,T_m</math> — разложимые тензоры.
 
<li><u>Первая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>U,V,W</math> — векторные пространства над полем <math>K</math>; тогда<br><math>(U\otimes V)\otimes W\cong U\otimes(V\otimes W)\cong U\otimes V\otimes W</math> и <math>V\otimes K\cong K\otimes V\cong V</math>, а также <math>V\otimes W\cong W\otimes V</math>.</i>
 
<li><u>Первая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>U,V,W</math> — векторные пространства над полем <math>K</math>; тогда<br><math>(U\otimes V)\otimes W\cong U\otimes(V\otimes W)\cong U\otimes V\otimes W</math> и <math>V\otimes K\cong K\otimes V\cong V</math>, а также <math>V\otimes W\cong W\otimes V</math>.</i>
 
<li>Тензорное произв.-е тензоров: <math>T\otimes T'</math>. Тензорное произв.-е гомоморфизмов (<math>a\in\mathrm{Hom}(V,Y),b\in\mathrm{Hom}(W,Z)</math>): <math>(a\otimes b)(v\otimes w)=a(v)\otimes b(w)</math>.
 
<li>Тензорное произв.-е тензоров: <math>T\otimes T'</math>. Тензорное произв.-е гомоморфизмов (<math>a\in\mathrm{Hom}(V,Y),b\in\mathrm{Hom}(W,Z)</math>): <math>(a\otimes b)(v\otimes w)=a(v)\otimes b(w)</math>.
Строка 58: Строка 58:
 
<li><u>Теорема о симметрической алгебре и внешней алгебре.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math><br>и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) множество <math>\{e_{i_1}\!\cdot\ldots\cdot e_{i_k}\!\mid k\in\mathbb N_0,\,i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1\le\ldots\le i_k\}</math> — базис алгебры <math>\,\mathsf S(V)</math>, и для любых элементов <math>e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math> и<br><math>e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}</math> этого базиса выполнено <math>(e_{i_1}\!\cdot\ldots\cdot e_{i_k})\cdot(e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}\!)=e_{\hat i_1}\!\cdot\ldots\cdot e_{\hat i_{k+k'}}</math>, где числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>,<br>упорядоченные по неубыванию;<br>(2) множество <math>\{e_{i_1}\!\wedge\ldots\wedge e_{i_k}\!\mid k\in\{0,\ldots,n\},\,i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1<\ldots<i_k\}</math> — базис алгебры <math>\,\mathsf\Lambda(V)</math>, и для любых элементов<br><math>e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math> и <math>e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}</math> этого базиса выполнено <math>(e_{i_1}\!\wedge\ldots\wedge e_{i_k})\wedge(e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}\!)=\mathrm{sgn}(i_1,\ldots,i_k,i_1',\ldots,i_{k'}'\!)\,e_{\hat i_1}\!\wedge\ldots\wedge e_{\hat i_{k+k'}}</math>, где<br>числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упорядоченные по возрастанию.</i></ul>
 
<li><u>Теорема о симметрической алгебре и внешней алгебре.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math><br>и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) множество <math>\{e_{i_1}\!\cdot\ldots\cdot e_{i_k}\!\mid k\in\mathbb N_0,\,i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1\le\ldots\le i_k\}</math> — базис алгебры <math>\,\mathsf S(V)</math>, и для любых элементов <math>e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math> и<br><math>e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}</math> этого базиса выполнено <math>(e_{i_1}\!\cdot\ldots\cdot e_{i_k})\cdot(e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}\!)=e_{\hat i_1}\!\cdot\ldots\cdot e_{\hat i_{k+k'}}</math>, где числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>,<br>упорядоченные по неубыванию;<br>(2) множество <math>\{e_{i_1}\!\wedge\ldots\wedge e_{i_k}\!\mid k\in\{0,\ldots,n\},\,i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1<\ldots<i_k\}</math> — базис алгебры <math>\,\mathsf\Lambda(V)</math>, и для любых элементов<br><math>e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math> и <math>e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}</math> этого базиса выполнено <math>(e_{i_1}\!\wedge\ldots\wedge e_{i_k})\wedge(e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}\!)=\mathrm{sgn}(i_1,\ldots,i_k,i_1',\ldots,i_{k'}'\!)\,e_{\hat i_1}\!\wedge\ldots\wedge e_{\hat i_{k+k'}}</math>, где<br>числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упорядоченные по возрастанию.</i></ul>
  
<h3>3.6&nbsp; Геометрия в векторных пространствах над <math>\mathbb R</math> или <math>\mathbb C</math> (часть 2)</h3>
+
<!--<h3>3.6&nbsp; Геометрия в векторных пространствах над <math>\mathbb R</math> или <math>\mathbb C</math> (часть 2)</h3>
 
<h5>3.6.1&nbsp; Объем, векторное произведение, оператор Ходжа</h5>
 
<h5>3.6.1&nbsp; Объем, векторное произведение, оператор Ходжа</h5>
 
<ul><li>Форма объема в ориентированном псевдоевклидовом простр.-ве (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>. Корректность определения формы <math>\mathrm{vol}</math>.
 
<ul><li>Форма объема в ориентированном псевдоевклидовом простр.-ве (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>. Корректность определения формы <math>\mathrm{vol}</math>.
Строка 100: Строка 100:
 
<li>Дифференциал внешней <math>k</math>-формы: <math>\mathrm d\Bigl(\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}\!\Bigr)=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\mathrm d\omega_{j_1,\ldots,j_k}\!\wedge\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}</math> — внешняя <math>(k+1)</math>-форма.
 
<li>Дифференциал внешней <math>k</math>-формы: <math>\mathrm d\Bigl(\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}\!\Bigr)=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\mathrm d\omega_{j_1,\ldots,j_k}\!\wedge\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}</math> — внешняя <math>(k+1)</math>-форма.
 
<li>Псевдориманово многообразие сигнатуры <math>(p,q)</math> — многообразие с метрической формой сигнатуры <math>(p,q)</math> (форма имеет сигн.-у <math>(p,q)</math> в каждой точке).
 
<li>Псевдориманово многообразие сигнатуры <math>(p,q)</math> — многообразие с метрической формой сигнатуры <math>(p,q)</math> (форма имеет сигн.-у <math>(p,q)</math> в каждой точке).
<li>Градиент функции: <math>\nabla f={\uparrow^\sigma}(\mathrm df)</math>; дивергенция и ротор вект. поля: <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow_\sigma}v)</math> и <math>\mathrm{rot}\,v={\uparrow^\sigma}(*\,\mathrm d({\downarrow_\sigma}v))</math>; лапласиан функции: <math>\Delta f=\mathrm{div}(\nabla f)</math><br>(опускание индекса, подъем индекса и оператор Ходжа на <math>M</math>: <math>({\downarrow_\sigma}v)(m)={\downarrow_{\sigma(m)}}(v(m))</math>, <math>({\uparrow^\sigma}\lambda)(m)={\uparrow^{\sigma(m)}}(\lambda(m))</math> и <math>(*\,\omega)(m)=*(\omega(m))</math>).</ul>
+
<li>Градиент функции: <math>\nabla f={\uparrow^\sigma}(\mathrm df)</math>; дивергенция и ротор вект. поля: <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow_\sigma}v)</math> и <math>\mathrm{rot}\,v={\uparrow^\sigma}(*\,\mathrm d({\downarrow_\sigma}v))</math>; лапласиан функции: <math>\Delta f=\mathrm{div}(\nabla f)</math><br>(опускание индекса, подъем индекса и оператор Ходжа на <math>M</math>: <math>({\downarrow_\sigma}v)(m)={\downarrow_{\sigma(m)}}(v(m))</math>, <math>({\uparrow^\sigma}\lambda)(m)={\uparrow^{\sigma(m)}}(\lambda(m))</math> и <math>(*\,\omega)(m)=*(\omega(m))</math>).</ul>-->

Версия 17:00, 10 октября 2017

3  Билинейная и полилинейная алгебра

In the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of Einstein's
theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about
them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct
mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:
"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while
the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).
Статья «Tensor» в англоязычной Википедии

3.4  Тензорные произведения векторных пространств

3.4.1  Определения, конструкции и основные теоремы, связанные с тензорами
  • Тензорное произведение пространств: , где и — подпространство полилинеаризации.
  • Разложимый тензор: . Утверждение: .
  • Теорема об универсальности тензорного произведения. Пусть — поле, и — векторные пространства над полем ; тогда
    отображение — полилинейный оператор, и для любых существует единственный
    такой линейный оператор , что для любых выполнено
    (и, значит, отображение — изоморфизм векторных пространств).
  • Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и
    базисы пространств соответственно; тогда все тензоры , где , попарно различны и вместе
    образуют базис пространства , а также, если , то .
  • Ранг тензора : равен минимальному среди всех таких чисел , что , где — разложимые тензоры.
  • Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    и , а также .
  • Тензорное произв.-е тензоров: . Тензорное произв.-е гомоморфизмов (): .
  • Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    (1) отображение — инъективный гомоморфизм векторных пространств, а также,
    если , то данное отображение — изоморфизм векторных пространств;
    (2) отображение — инъективный гомоморфизм векторных пространств, а также, если , то
    данное отображение — изоморфизм векторных пространств;
    (3) отображения и — инъективные гомоморфизмы векторных
    пространств, а также, если , то данные отображения — изоморфизмы векторных пространств.
3.4.2  Тензорная алгебра и тензоры в координатах
  • Пространство тензоров типа : . Примеры: , , , , .
  • Примеры: — пространство структур алгебры на , — пространство структур коалгебры на .
  • Утверждение: пусть и ; тогда — изоморфизм вект. пространств.
  • Тензорная алгебра: — ассоциативная -алгебра с (в опред. умножения используются изоморфизмы ).
  • Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; обозначим через
    число ; тогда множество — базис алгебры , и для любых элементов
    и этого базиса выполнено (и, значит,
    линейное отображение, заданное на базисе по правилу , — изоморфизм алгебр с ).
  • Тензор в координатах: . Примеры: , , .
  • Примеры: — метрический тензор, — форма объема.
  • Формула замены коорд. тензора: (здесь и ).
3.4.3  Операции над тензорами
  • Перестановки компонент тензоров в общем случае. Представление группы в простр.-ве : .
  • Тензорное произведение тензоров в координатах: . Кронекеровское произведение матриц.
  • Свертка по паре : .
  • Свертка по паре в координатах: . Теорема о свертках тензоров малой валентности.

    Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых , и выполнено , , и ;
    (2) для любых и выполнено и .

  • Теорема об обратном метрическом тензоре. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) прообраз гомоморфизма относительно изоморфизма равен тензору ;
    (2) если форма невырождена, то, обозначая через прообраз гомоморфизма относительно изоморфизма
    (тензор — тензор типа , обратный к тензору ), для любых имеем следующий факт: .
  • Опускание индекса: .
  • Подъем индекса: .
  • Опускание и подъем в координатах: , .

3.5  Симметрические и внешние степени векторных пространств

3.5.1  Определения и конструкции, связанные с симметричными и антисимметричными тензорами
  • Симметрическая и внешняя степени: и .
  • Лемма о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр. над ,
    , ; обозначим через изоморфизм ; тогда
    (1) для любых , обозначая через автоморфизм , имеем следующие факты:
    , и ;
    (2) и (и, значит, и ).
  • Операторы симметризации и альтернирования: и . Лемма о симметризации и альтернировании.

    Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) , и , (то есть — проектор на и — проектор на ).

  • Симметрич. произведение векторов: . Внешнее произведение векторов: .
  • Лемма о симметрическом произведении и внешнем произведении векторов. Пусть — поле, , — вект. пр. над , ; тогда
    (1) и для любых и выполнено ;
    (2) и для любых и выполнено .
  • Теорема о базисе симметрической степени и базисе внешней степени. Пусть — поле, , — векторное пространство над полем ,
    , и ; обозначим через число ; тогда
    (1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (3) и .
  • Симметрич. тензор в координатах: . Антисимметрич. тензор в координатах: .
  • Примеры: — форма объема, .
3.5.2  Симметрическая алгебра и внешняя алгебра
  • Симметрич. и внешняя степени гомоморфизма: и (корректность следует из ).
  • Утверждение: пусть и ; тогда и .
  • Симметрическое произведение тензоров: . Внешнее произведение тензоров: .
  • Лемма о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное пространство над
    полем , , и , , ; тогда
    (1) и ;
    (2) и ;
    (3) и
    (симметрическое произведение ассоциативно и внешнее произведение ассоциативно);
    (4) и ;
    (5) и (симметрическое произведение коммутативно и внешнее произведение суперкоммутативно).
  • Симметрическая алгебра (алгебра симметричных контравариантных тензоров): — ассоциативная коммутативная -алгебра с .
  • Внешняя алгебра (алгебра антисимметричных контравариантных тензоров): — ассоциативная суперкоммутативная -алгебра с .
  • Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — векторное пространство над полем ,
    и ; обозначим через число ; тогда
    (1) множество — базис алгебры , и для любых элементов и
    этого базиса выполнено , где числа суть числа ,
    упорядоченные по неубыванию;
    (2) множество — базис алгебры , и для любых элементов
    и этого базиса выполнено , где
    числа суть числа , упорядоченные по возрастанию.