Алгебра phys 1 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 10: Строка 10:
 
<li><u>Лемма о логических связках.</u> <i>Пусть <math>a,b,c</math> — высказывания; тогда<br>(1) <math>(a\lor b)\lor c=a\lor(b\lor c)</math>, <math>a\lor b=b\lor a</math>, <math>(a\land b)\land c=a\land(b\land c)</math>, <math>a\land b=b\land a</math>;<br>(2) <math>a\land(b\lor c)=(a\land b)\lor(a\land c)</math>, <math>a\lor(b\land c)=(a\lor b)\land(a\lor c)</math>;<br>(3) <math>\lnot(a\lor b)=\lnot a\land\lnot b</math>, <math>\lnot(a\land b)=\lnot a\lor\lnot b</math>, <math>(a\Rightarrow b)=\lnot a\lor b</math>, <math>(a\Rightarrow b)=(\lnot b\Rightarrow\lnot a)</math>.</i>
 
<li><u>Лемма о логических связках.</u> <i>Пусть <math>a,b,c</math> — высказывания; тогда<br>(1) <math>(a\lor b)\lor c=a\lor(b\lor c)</math>, <math>a\lor b=b\lor a</math>, <math>(a\land b)\land c=a\land(b\land c)</math>, <math>a\land b=b\land a</math>;<br>(2) <math>a\land(b\lor c)=(a\land b)\lor(a\land c)</math>, <math>a\lor(b\land c)=(a\lor b)\land(a\lor c)</math>;<br>(3) <math>\lnot(a\lor b)=\lnot a\land\lnot b</math>, <math>\lnot(a\land b)=\lnot a\lor\lnot b</math>, <math>(a\Rightarrow b)=\lnot a\lor b</math>, <math>(a\Rightarrow b)=(\lnot b\Rightarrow\lnot a)</math>.</i>
 
<li>Кванторы: <math>\exists</math> — существование («существует»), <math>\forall</math> — всеобщность («для любых»), <math>\exists!</math> — существование и единственность («существует единственный»).
 
<li>Кванторы: <math>\exists</math> — существование («существует»), <math>\forall</math> — всеобщность («для любых»), <math>\exists!</math> — существование и единственность («существует единственный»).
<li>Равенство множеств: <math>X=Y\,\Leftrightarrow\,\forall\,z\;\bigl(z\in X\,\Leftrightarrow\,z\in Y\bigr)</math>, включение: <math>\subseteq</math>, задание множества перечисл.-ем элементов: <math>\{\ldots\}</math>, пустое мн.-во: <math>\varnothing=\{\,\}</math>.
+
<li>Равенство множеств: <math>X=Y\,\Leftrightarrow\,\forall\,z\;\bigl(z\in X\,\Leftrightarrow\,z\in Y\bigr)</math>, включение: <math>\subseteq</math>, задание множества перечислением элементов: <math>\{\ldots\}</math>, пустое множество: <math>\varnothing</math>.
 
<li>Выделение подмножества: <math>\{x\in X\mid p(x)\}</math>. Операции над множествами: <math>\cup</math> — объединение, <math>\cap</math> — пересечение, <math>\setminus</math> — разность, <math>\times</math> — произведение.
 
<li>Выделение подмножества: <math>\{x\in X\mid p(x)\}</math>. Операции над множествами: <math>\cup</math> — объединение, <math>\cap</math> — пересечение, <math>\setminus</math> — разность, <math>\times</math> — произведение.
 
<li><u>Лемма об операциях над множествами.</u> <i>Пусть <math>X,Y,Z</math> — множества; тогда<br>(1) <math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>, <math>X\cup Y=Y\cup X</math>, <math>(X\cap Y)\cap Z=X\cap(Y\cap Z)</math>, <math>X\cap Y=Y\cap X</math>;<br>(2) <math>X\cap(Y\cup Z)=(X\cap Y)\cup(X\cap Z)</math>, <math>X\cup(Y\cap Z)=(X\cup Y)\cap(X\cup Z)</math>;<br>(3) если <math>U</math> — множество и <math>X,Y\subseteq U</math>, то <math>U\setminus(X\cup Y)=(U\setminus X)\cap(U\setminus Y)</math> и <math>U\setminus(X\cap Y)=(U\setminus X)\cup(U\setminus Y)</math>.</i>
 
<li><u>Лемма об операциях над множествами.</u> <i>Пусть <math>X,Y,Z</math> — множества; тогда<br>(1) <math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>, <math>X\cup Y=Y\cup X</math>, <math>(X\cap Y)\cap Z=X\cap(Y\cap Z)</math>, <math>X\cap Y=Y\cap X</math>;<br>(2) <math>X\cap(Y\cup Z)=(X\cap Y)\cup(X\cap Z)</math>, <math>X\cup(Y\cap Z)=(X\cup Y)\cap(X\cup Z)</math>;<br>(3) если <math>U</math> — множество и <math>X,Y\subseteq U</math>, то <math>U\setminus(X\cup Y)=(U\setminus X)\cap(U\setminus Y)</math> и <math>U\setminus(X\cap Y)=(U\setminus X)\cup(U\setminus Y)</math>.</i>

Версия 01:00, 11 сентября 2017

1  Основы алгебры

Читателю может потребоваться усилие воли, чтобы увидеть в математике воспитателя образного мышления. Чаще с ней связы-
вается представление о жесткой логике и вычислительном формализме. Но это — лишь дисциплина, линейка, которой нас учат
не умирать. Вычислительный формализм математики — мысль, экстериоризованная до такой степени, что она на время отчуж-
дается и превращается в технологический процесс. Математический образ формируется в затяжном приживлении к человеку
этой временно отторгнутой мысли. Думать — значит вычислять, волнуясь.
Ю.И. Манин. Математика и физика
Развитие современной физики потребовало такого математического аппарата, который непрерывно расширяет свои основания и
становится все более и более абстрактным. Неевклидова геометрия и некоммутативная алгебра, которые одно время считались
чистой игрой разума и упражнениями для логических размышлений, теперь оказались необходимыми для описания весьма общих
закономерностей физического мира. Похоже, что этот процесс возрастания степени абстракции будет продолжаться и в будущем
и что развитие физики следует связывать с непрерывной модификацией и обобщением аксиом, лежащих в основе математики, а
не с логическим развитием какой бы то ни было математической схемы, построенной на фиксированном основании.
П.А.М. Дирак. Квантованные сингулярности в электромагнитном поле

1.1  Множества, отображения, отношения

1.1.1  Множества
  • Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
  • Лемма о логических связках. Пусть — высказывания; тогда
    (1) , , , ;
    (2) , ;
    (3) , , , .
  • Кванторы: — существование («существует»), — всеобщность («для любых»), — существование и единственность («существует единственный»).
  • Равенство множеств: , включение: , задание множества перечислением элементов: , пустое множество: .
  • Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
  • Лемма об операциях над множествами. Пусть — множества; тогда
    (1) , , , ;
    (2) , ;
    (3) если — множество и , то и .
  • Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
  • — порядок (количество элементов) мн.-ва (), — множество подмножеств мн.-ва , -я степень мн.-ва ().
1.1.2  Отображения
  • Множество отображений, действующих из мн.-ва в мн.-во : . Область отобр.-я : , кообласть отобр.-я : . Примеры.
  • Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
  • Сужения отображения ( и ): и . Сокращенная запись образа: .
  • Инъекции: . Сюръекции: .
  • Биекции: . Композиция отображений и : . Тождественное отображение: .
  • Теорема о композиции отображений. Пусть — множества и ; тогда
    (1) , и, если — множества, и , то ;
    (2) если , то — инъекция, если и только если ;
    (3) — сюръекция, если и только если ;
    (4) — биекция, если и только если .
  • Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3  Отношения
  • Множество отношений между множествами и : . Область отношения : , кообласть отношения : . Примеры.
  • Отношения эквивалентности: .
  • Класс эквивалентности: . Утверждение: . Фактормножество: .
  • Разбиения: . Утверждение: . Трансверсали.
  • Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
  • Отношение : . Слои отображения : (). Факторотображение — биекция.
  • Утверждение: . Принцип Дирихле. Пусть — множества и ; тогда .

1.2  Группы (часть 1)

1.2.1  Множества с операцией
  • Внутренняя -арная операция на мн.-ве — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
  • Гомоморфизмы между мн.-вами с операцией: .
  • Изоморфизмы: . Эндоморфизмы мн.-ва с опер.: . Автоморфизмы: .
  • Теорема о композиции гомоморфизмов. Пусть и — множества с -арной операцией; тогда
    (1) для любых и выполнено ;
    (2) для любых выполнено .
  • Обозначение по Минковскому: . Примеры: , , .
  • Инфиксная запись бинарн. опер.-й. Ассоциативность: . Коммутативность (абелевость): .
  • Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.

    Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
    расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).

1.2.2  Моноиды и группы (основные определения и примеры)
  • Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
  • Примеры: числовые моноиды, моноиды функций , моноиды слов и , моноиды отображений .
  • Обратимые элементы: . Единственность обратного элемента. Утверждение: .
  • Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
  • Примеры: числовые группы, группы остатков, группы функций , свободные группы , группы биекций ().
  • Мультипликативные обозначения в группе : , , и (). Аддитивные обозначения в абелевой группе : , , и ().
  • Симметрические группы: . Запись перестановки в виде послед.-сти значений. Цикловая запись перестановки. Лемма о циклах.

    Лемма о циклах. Пусть , , числа попарно различны и ; тогда
    , а также .

  • Группа изометрий пр.-ва : , где .
1.2.3  Подгруппы, классы смежности, циклические группы
  • Подгруппа: . Подгруппа, порожденная мн.-вом : — наименьшая подгруппа, содержащая .
  • Утверждение: (в частности, ). Пример: .
  • Отношения и : () и (). Утверждение: и .
  • Множества классов смежности: и . Теорема Лагранжа. Индекс: .

    Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).

  • Порядок элемента: (). Утверждение: пусть ; тогда .
  • Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
  • Теорема об обратимых остатках.
    (1) Пусть и ; тогда .
    (2) Пусть ; тогда (в частности, если , то ).
    (3) Пусть , и не делит ; тогда (это малая теорема Ферма).
  • Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.

    Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .

1.2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
  • Нормальная подгруппа: . Пример: .
  • Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
  • Нормальная подгруппа, порожденная множеством : — наименьшая нормальная подгруппа, содержащая . Утверждение: .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Факторгруппа: с фактороперациями (). Корректность опред.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — группы и ; тогда .

  • Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
  • Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".

1.3  Кольца (часть 1)

1.3.1  Определения и конструкции, связанные с кольцами
  • Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
  • Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
  • Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
  • Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.

    Теорема о гомоморфизме. Пусть — кольца и ; тогда .

  • Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
  • Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2  Кольца многочленов
  • Кольцо многочленов от переменной над кольцом : ; отождествл.-е и ; общий вид многочлена: .
  • Умножение в . Степень и старший коэфф.-т. Утверждение: . Делимость в ( — комм. кольцо): .
  • Неприводимые многочлены: . Пример: — поле, и ; тогда .
  • Лемма о делении с остатком. Операции и (старший коэфф.-т многочл. обратим): и .

    Лемма о делении с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
    существуют единственные такие многочлены , что и .

  • Кольцо остатков по модулю многочлена ( — поле, ): . Утверждение: .
  • Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
  • Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.

    Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).

    Теорема о корнях многочлена. Пусть — область целостности и ; тогда .

    Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .

  • Теорема Виета. Пусть — коммутативное кольцо, , и ;
    тогда для любых выполнено (в частности, и ).
1.3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Единичная окружность в : . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, ).

  • Тригонометрическая форма компл. числа: . Утверждение: .
  • Группа корней -й степени из : . Первообразные корни -й степени из .
  • Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
  • Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4  Тело кватернионов
  • Кольцо кватернионов: , где , а также , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
  • Лемма об умножении кватернионов. Сопряжение: . Модуль: . Утверждение: .

    Лемма об умножении кватернионов. Для любых и выполнено .

  • Теорема о свойствах кватернионов.
    (1) Для любых выполнено и, если , то (и, значит, — тело).
    (2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Трехмерная сфера: . Утверждение: пусть ; тогда опр.-но корректно и явл.-ся изометрией.
  • Изометрии в : (доказательство только включения ).
  • Изометрии в : (док.-во только ).