Машинное обучение 2 осень 2017 — различия между версиями
Материал из SEWiki
(→План лекций:) |
(→План лекций:) |
||
| Строка 5: | Строка 5: | ||
1. Введение в область | 1. Введение в область | ||
| + | |||
2. Анализ задачи | 2. Анализ задачи | ||
a. Сэмплирование и размерность задачи | a. Сэмплирование и размерность задачи | ||
Версия 18:29, 8 сентября 2017
Семинар
Преподаватель: Кураленок И. Е.
План лекций:
1. Введение в область
2. Анализ задачи
a. Сэмплирование и размерность задачи
b. Уменьшение размерности: feature selection
c. Уменьшение размерности: feature extraction
d. Embedded модели на линейном примере (LASSO, LARS, etc.)
3. Практическая оценка методов машинного обучения 4. Теоретическая оценка 5. Основные принципы построения целевых функций 6. Необычные факторы в обучении
a. Обучение на последовательностях
b. Рекомендательные системы
7. Построение целевых функций 8. Введение в online обучение 9. Несколько подходов к построению решающей функции
a. Сэмплирование пространства решений и NFLT
b. Введение в байесовское моделирование
c. Сегментация пространства задачи (деревья, кластеризация, :))
d. Ансамбли (BOC->Boosting)
10. История решения одной практической задачи (MLR)
Презентации:
Файл:Ml-1.pdf Лекция №1. Введение в область.