Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 28: Строка 28:
 
<li>Пример: <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топологич. невырождена (без док.-ва).
 
<li>Пример: <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топологич. невырождена (без док.-ва).
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
<li>Нахожд.-е координат вектора при помощи невырожд. формы <math>\sigma</math>: <math>v^e=\sigma^{e,e}\!\cdot((\flat_\sigma v)_e)^\mathtt T\!=\sigma^{e,e}\!\cdot\!\biggl(\begin{smallmatrix}\sigma(v,e_1)\\\vdots\\\sigma(v,e_n)\end{smallmatrix}\biggr)</math>. Теорема о базисах и невырожденных формах.
+
<li>Нахождение координат вектора при помощи невырожд. формы: <math>v^e=\sigma^{e,e}\!\cdot((\flat_\sigma v)_e)^\mathtt T\!=\sigma^{e,e}\!\cdot\!\biggl(\begin{smallmatrix}\sigma(v,e_1)\\\vdots\\\sigma(v,e_n)\end{smallmatrix}\biggr)</math>. Теорема о базисах и невырожденных формах.
 
<p><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i></p>
 
<p><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i></p>
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
Строка 62: Строка 62:
 
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Теорема об ортогональном проектировании. Расст.-е между вектором и подпр.-вом: <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>.
 
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Теорема об ортогональном проектировании. Расст.-е между вектором и подпр.-вом: <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>.
 
<p><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U\le V</math> и <math>\dim U<\infty</math>; тогда<br>(1) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\mathrm{dist}(v,\mathrm{proj}_U(v))<\mathrm{dist}(v,u)</math> (и, значит, <math>\mathrm{dist}(v,\mathrm{proj}_U(v))=\min\{\mathrm{dist}(v,u)\mid u\in U\}</math>);<br>(2) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя).</i></p>
 
<p><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U\le V</math> и <math>\dim U<\infty</math>; тогда<br>(1) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\mathrm{dist}(v,\mathrm{proj}_U(v))<\mathrm{dist}(v,u)</math> (и, значит, <math>\mathrm{dist}(v,\mathrm{proj}_U(v))=\min\{\mathrm{dist}(v,u)\mid u\in U\}</math>);<br>(2) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя).</i></p>
<li>Метод наименьших квадратов: замена системы <math>a\cdot v=y</math>, где <math>a\in\mathrm{Mat}(p,n,\mathbb R)</math>, <math>\mathrm{rk}(a)=n</math> и <math>y\notin\!\{a\cdot v\mid v\in\mathbb R^n\}=X</math>, на систему <math>a\cdot v=\mathrm{proj}_X(y)</math>.
+
<li>Метод наименьших квадратов: замена системы <math>a\cdot v=y</math>, где <math>a\in\mathrm{Mat}(p,n,\mathbb R)</math>, <math>\mathrm{rk}(a)=n</math> и <math>y\notin\{a\cdot v\mid v\in\mathbb R^n\}=X</math>, на систему <math>a\cdot v=\mathrm{proj}_X(y)</math>.
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.</ul>
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.</ul>
  
Строка 103: Строка 103:
  
 
<h5>3.3.3&nbsp; Спектральная теория в унитарных пространствах</h5>
 
<h5>3.3.3&nbsp; Спектральная теория в унитарных пространствах</h5>
<ul><li><u>Теорема о собственных векторах нормального оператора.</u> <i>Пусть <math>V</math> — унитарное или евклидово пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br>для любых <math>c\in\mathrm{Spec}(a)</math> выполнено <math>V_1(a,c)=V_1(a^*\!,\overline c)</math>, а также для любых таких <math>c,d\in\mathrm{Spec}(a)</math>, что <math>c\ne d</math>, выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.</i>
+
<ul><li><u>Теорема о собственных векторах нормального оператора.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>a\in\mathrm{NEnd}(V)</math>; тогда<br>для любых <math>c\in\mathrm{Spec}(a)</math> выполнено <math>V_1(a,c)=V_1(a^*\!,\overline c)</math>, а также для любых таких <math>c,d\in\mathrm{Spec}(a)</math>, что <math>c\ne d</math>, выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.</i>
<li><u>Спектральная теорема в унитарных пространствах.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>a\in\mathrm{NEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathrm S^1</math>;<br>(3) <math>a\in\mathrm{SEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с вещественными числами на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R</math>;<br>(4) <math>a\in\mathrm{AEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>;<br>(5) <math>a\in\mathrm{SEnd}_{>0}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с положительными числами на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
+
<li><u>Спектральная теорема в унитарных пространствах.</u> <i>Пусть <math>V</math> — унитарное пространство и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>a\in\mathrm{NEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагон. матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathrm S^1</math>;<br>(3) <math>a\in\mathrm{SEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагон. матрица с вещественными числами на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R</math>;<br>(4) <math>a\in\mathrm{AEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагон. матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>;<br>(5) <math>a\in\mathrm{SEnd}_{>0}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагон. матрица с положительными числами на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
<li><u>Матричная формулировка спектральной теоремы в унитарных пространствах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
+
<li><u>Матричная формулировка спектральной теоремы в унитарных пространствах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда<br>(1) <math>a\cdot\overline a^\mathtt T\!=\overline a^\mathtt T\!\cdot a</math><math>\,\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm U(n)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\mathrm e^{\varphi\,\mathrm i}</math>, где <math>\varphi\in[0;2\pi)</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\overline{\mathrm S}\mathrm{Mat}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с вещественными числами на диагонали<math>\bigr)</math>;<br>(4) <math>a\in\overline{\mathrm A}\mathrm{Mat}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с числами вида <math>\beta\,\mathrm i</math>, где <math>\beta\in\mathbb R</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\overline{\mathrm S}\mathrm{Mat}_{>0}(n,\mathbb C)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm U(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
 
<li>Ортогональный проектор: <math>p^2=p\,\land\,p^*\!=p\;\Leftrightarrow\,\exists\,U\le V\;\bigl(p=\mathrm{proj}_U\!\bigr)</math>. Спектральное разложение нормального оператора <math>a</math>: <math>a=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!c\cdot\mathrm{proj}_{V_1(a,c)}</math>.
 
<li>Ортогональный проектор: <math>p^2=p\,\land\,p^*\!=p\;\Leftrightarrow\,\exists\,U\le V\;\bigl(p=\mathrm{proj}_U\!\bigr)</math>. Спектральное разложение нормального оператора <math>a</math>: <math>a=\!\!\!\sum_{c\in\mathrm{Spec}(a)}\!\!\!c\cdot\mathrm{proj}_{V_1(a,c)}</math>.
 
<li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>d</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>d</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.</i>
 
<li><u>Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.</u><br><i>(1) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb C</math> и <math>a\in\mathrm U(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm U(V)\,\Rightarrow\,c\in\mathrm S^1</math>, <math>a\in\mathrm{SEnd}(V)\,\Rightarrow\,c\in\mathbb R</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c\in\mathbb R\,\mathrm i</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также<br>для любых двух различных собственных чисел <math>c</math> и <math>d</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.<br>(2) Пусть <math>V</math> — предгильбертово пространство над полем <math>\,\mathbb R</math> и <math>a\in\mathrm O(V)\cup\mathrm{SEnd}(V)\cup\mathrm{AEnd}(V)</math>; тогда для любого собственного числа <math>c</math><br>оператора <math>a</math> выполнено <math>a\in\mathrm O(V)\,\Rightarrow\,c\in\{1,-1\}</math>, <math>a\in\mathrm{AEnd}(V)\,\Rightarrow\,c=0</math>, <math>a\in\mathrm{SEnd}_{>0}(V)\,\Rightarrow\,c\in\mathbb R_{>0}</math>, а также для любых двух различных<br>собственных чисел <math>c</math> и <math>d</math> оператора <math>a</math> выполнено <math>V_1(a,c)\perp V_1(a,d)</math>.</i>
 
<li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul>
 
<li>Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).</ul>
  
<!--<h5>3.3.4&nbsp; Спектральная теория в евклидовых пространствах</h5>
+
<h5>3.3.4&nbsp; Спектральная теория в евклидовых пространствах</h5>
<ul><li><math>\mathbb C</math>-Диагональная матрица: блочно-диагональная матрица над <math>\mathbb R</math> с блоками размера <math>1\times1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)</math>, где <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>.
+
<ul><li><math>\mathbb C</math>-Диагональная матрица блочно-диагональная матрица над полем <math>\mathbb R</math> с блоками размера <math>1\times1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)</math>, где <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>.
<li><math>\mathbb C</math>-Спектр оператора: <math>\mathbb C\mathrm{Spec}(a)=\{c\in\mathbb C\mid\chi_a(c)=0\}</math>. Утверждение: <i>пусть <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>; тогда <math>\,\mathbb C\mathrm{Spec}\bigl(\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\bigr)=\{\alpha+\beta\,\mathrm i,\alpha-\beta\,\mathrm i\}</math></i>.
+
<li><math>\mathbb C</math>-Спектр линейного оператора <math>a</math> в конечномерном пр.-ве над <math>\mathbb R</math>: <math>\mathbb C\mathrm{Spec}(a)=\{c\in\mathbb C\mid\chi_a(c)=0\}</math>. Пример: <math>\mathbb C\mathrm{Spec}\bigl(\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\bigr)=\{\alpha+\beta\,\mathrm i,\alpha-\beta\,\mathrm i\}</math>.
<li><u>Лемма об операторе с пустым спектром над полем <b>R</b>.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>V\ne\{0\}</math>, <math>a\in\mathrm{End}(V)</math> и <math>\,\mathrm{Spec}(a)=\varnothing</math>; тогда<br>(1) существует такое подпространство <math>U</math> пространства <math>V</math>, что <math>\dim U=2</math>, <math>a(U)\le U</math> и, если <math>a\in\mathcal N\mathrm{End}(V)</math>, то <math>a^*(U)\le U</math>;<br>(2) если <math>\dim V=2</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> выполнено <math>a\in\mathcal N\mathrm{End}(V)\,\Leftrightarrow\,a_e^e\in\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R,\,\beta\ne0\bigr\}</math>.</i>
+
<li><u>Лемма о линейном операторе с пустым спектром над полем <b>R</b>.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>V\ne\{0\}</math>, <math>a\in\mathrm{End}(V)</math> и <math>\,\mathrm{Spec}(a)=\varnothing</math>; тогда<br>(1) существует такое подпространство <math>U</math> пространства <math>V</math>, что <math>\dim U=2</math>, <math>a(U)\subseteq U</math> и, если <math>a\in\mathrm{NEnd}(V)</math>, то <math>a^*(U)\subseteq U</math>;<br>(2) если <math>\dim V=2</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> выполнено <math>a\in\mathrm{NEnd}(V)\,\Leftrightarrow\,a_e^e\in\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R,\,\beta\ne0\bigr\}</math>.</i>
<li>Спектральная теорема для нормальных операторов в евклидовом пространстве и матричная формулировка этой теоремы.
+
<li><u>Спектральная теорема для евклидовых пространств.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>a\in\mathrm{NEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диаг. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow</math><br><math>\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>;<br>(3) <math>a\in\mathrm{SEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>;<br>(4) <math>a\in\mathrm{AEnd}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math><math>\;\Leftrightarrow</math><br><math>\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>;<br>(5) <math>a\in\mathrm{SEnd}_{>0}(V)</math><math>\;\Leftrightarrow\;</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с положительными числами на диагонали<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>a\in\mathrm{NEnd}(V)\,\land\,\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>.</i>
<p><u>Спектральная теорема для нормальных операторов в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{End}(V)</math>; тогда<br><math>a\in\mathcal N\mathrm{End}(V)</math>, если и только если <math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>.</i></p>
+
<li><u>Матричная формулировка спектральной теоремы в евклидовых пространствах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br>(1) <math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a\,</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>;<br>(2) <math>a\in\mathrm O(n)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диаг. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math>;<br>(3) <math>a\in\mathrm{SMat}(n,\mathbb R)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица<math>\bigr)</math>;<br>(4) <math>a\in\mathrm{AMat}(n,\mathbb R)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math>;<br>(5) <math>a\in\mathrm{SMat}_{>0}(n,\mathbb R)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> — диагональная матрица с положительными числами на диагонали<math>\bigr)</math>.</i>
<p><u>Матричная формулировка спектральной теоремы для нормальных операторов в евклидовом пространстве.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb R)</math>; тогда<br><math>a\cdot a^\mathtt T\!=a^\mathtt T\!\cdot a</math>, если и только если <math>\exists\,g\in\mathrm O(n)\;</math><math>\bigl(</math><math>g\cdot a\cdot g^{-1}</math> <math>\mathbb C</math>-диагональная матрица<math>\bigr)</math>.</i></p>
+
<li><u>Усиленная теорема Лагранжа для евклидовых и унитарных пространств.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>\tau\in\overline\mathrm{SBi}(V)</math>; тогда<br><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>\tau_{e,e}</math> — диагональная матрица<math>\bigr)</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>).</i></ul>
<li><u>Спектральная теорема для ортогональных, симметричных, положительно определенных и антисимметричных операторов в евклидовом пространстве.</u><br><i>Пусть <math>V</math> — евклидово пространство и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>a\in\mathrm O(V)</math><math>\,\Leftrightarrow\,</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диаг. матрица с числами <math>1</math>, <math>-1</math> и блоками вида <math>\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>, где <math>\varphi\in(0;2\pi)\!\setminus\!\{\pi\}</math>, на диагонали<math>\bigr)</math><math>\,\Leftrightarrow</math><br><math>\Leftrightarrow\,</math><math>a\in\mathcal N\mathrm{End}(V)\;\land\;\mathbb C\mathrm{Spec}(a)\subset\mathrm S^1</math>;<br>(2) <math>a\in\mathcal S\mathrm{End}(V)</math><math>\,\Leftrightarrow\,</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диагональная матрица<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>a\in\mathcal N\mathrm{End}(V)\;\land\;\mathbb C\mathrm{Spec}(a)\subset\mathbb R</math>;<br>(3) <math>a\in\mathcal S\mathrm{End}_{>0}(V)</math><math>\,\Leftrightarrow\,</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — диаг. матрица с положительными числами на диагонали<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>a\in\mathcal N\mathrm{End}(V)\;\land\;\mathbb C\mathrm{Spec}(a)\subset\mathbb R_{>0}</math>;<br>(4) <math>a\in\mathcal A\mathrm{End}(V)</math><math>\,\Leftrightarrow\,</math><math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>a_e^e</math> — <math>\mathbb C</math>-диагональная матрица с числом <math>0</math> и блоками вида <math>\Bigl(\begin{smallmatrix}0&-\beta\\\beta&0\end{smallmatrix}\Bigr)</math>, где <math>\beta\in\mathbb R\!\setminus\!\{0\}</math>, на диагонали<math>\bigr)</math><math>\,\Leftrightarrow</math><br><math>\Leftrightarrow\,</math><math>a\in\mathcal N\mathrm{End}(V)\;\land\;\mathbb C\mathrm{Spec}(a)\subset\mathbb R\,\mathrm i</math>.</i>
+
 
<li><u>Усиленная теорема Лагранжа для евклидова или унитарного пространства.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>\tau\in\overline\mathrm{SBi}(V)</math>;<br>тогда <math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>\tau_{e,e}</math> — диагональная матрица<math>\bigr)</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>).</i>
+
<!--<h5>3.3.5&nbsp; Ортогональные операторы в трехмерном евклидовом пространстве и в пространстве Минковского</h5>
<li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\dim V=3</math>, <math>a\in\mathrm{SO}(V)\!\setminus\!\{\mathrm{id}_V\}</math>; обозначим через <math>U</math> пространство <math>V_1(a,1)</math><brобозначим через <math>b</math> оператор <math>a|_{U^\perp\to U^\perp}</math>; тогда <math>\dim U=1</math>, <math>b\in\mathrm{SO}(U^\perp)</math> и для любых <math>v\in V</math> выполнено <math>a(v)=\mathrm{proj}_U(v)+b\bigl(v-\mathrm{proj}_U(v)\bigr)</math><br>(то есть оператор <math>a</math> — вращение вокруг оси <math>U</math>).</i>
+
<ul><li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\dim V=3</math>, <math>a\in\mathrm{SO}(V)</math>, <math>a\ne\mathrm{id}_V</math>, <math>U=V_1(a,1)</math> и <math>b=a|_{U^\perp\to U^\perp}</math>; тогда<br><math>\dim U=1</math>, <math>b\in\mathrm{SO}(U^\perp)</math> и для любых <math>v\in V</math> выполнено <math>a(v)=\mathrm{proj}_U(v)+b\bigl(v-\mathrm{proj}_U(v)\bigr)</math> (и, значит, <math>a</math> — вращение вокруг оси <math>U</math>).</i>
 
<li><u>Теорема о группах SU(2) и SO(3).</u><br><i>(1) <math>\mathrm{SU}(2)\cong\mathrm S^3</math>, <math>\mathrm{SO}(3)\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (пространство <math>\,\mathbb H_\mathrm{vect}</math> рассматривается со стандартным симметричным скалярным произведением).<br>(2) Для любых <math>g\in\mathrm S^3</math>, обозначая через <math>\mathrm{rot}_g</math> отображение <math>\biggl(\!\begin{align}\mathbb H_\mathrm{vect}\!&\to\mathbb H_\mathrm{vect}\\v&\mapsto g\,v\,g^{-1}\!\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{rot}_g\!\in\mathrm{SO}(\mathbb H_\mathrm{vect})</math>.<br>(3) Для любых <math>u\in\mathbb H_\mathrm{vect}\!\cap\mathrm S^3</math> и <math>\varphi\in[0;2\pi)</math>, обозначая через <math>g</math> кватернион <math>\cos\varphi+\sin\varphi\cdot u</math>, имеем следующие факты: <math>g\in\mathrm S^3</math>, <math>\mathrm{rot}_g(u)=u</math><br>и для любых <math>w\in\langle u\rangle^\perp</math> выполнено <math>\mathrm{rot}_g(w)=\cos(2\varphi)\,w+\sin(2\varphi)\,u\times w</math>.<br>(4) Обозначая через <math>\,\mathrm{rot}</math> отображение <math>\biggl(\!\begin{align}\mathrm S^3\!&\to\mathrm{SO}(\mathbb H_\mathrm{vect})\\g&\mapsto\mathrm{rot}_g\end{align}\!\biggr)</math>, имеем следующие факты: <math>\mathrm{rot}</math> — гомоморфизм групп, <math>\mathrm{Ker}\,\mathrm{rot}=\{1,-1\}</math> и<br><math>\mathrm{Im}\,\mathrm{rot}=\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (и, значит, <math>\mathrm S^3\!/\{1,-1\}\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> и <math>\,\mathrm{SU}(2)/\{\mathrm{id}_2,-\mathrm{id}_2\}\cong\mathrm{SO}(3)</math>).</i></ul>-->
 
<li><u>Теорема о группах SU(2) и SO(3).</u><br><i>(1) <math>\mathrm{SU}(2)\cong\mathrm S^3</math>, <math>\mathrm{SO}(3)\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (пространство <math>\,\mathbb H_\mathrm{vect}</math> рассматривается со стандартным симметричным скалярным произведением).<br>(2) Для любых <math>g\in\mathrm S^3</math>, обозначая через <math>\mathrm{rot}_g</math> отображение <math>\biggl(\!\begin{align}\mathbb H_\mathrm{vect}\!&\to\mathbb H_\mathrm{vect}\\v&\mapsto g\,v\,g^{-1}\!\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{rot}_g\!\in\mathrm{SO}(\mathbb H_\mathrm{vect})</math>.<br>(3) Для любых <math>u\in\mathbb H_\mathrm{vect}\!\cap\mathrm S^3</math> и <math>\varphi\in[0;2\pi)</math>, обозначая через <math>g</math> кватернион <math>\cos\varphi+\sin\varphi\cdot u</math>, имеем следующие факты: <math>g\in\mathrm S^3</math>, <math>\mathrm{rot}_g(u)=u</math><br>и для любых <math>w\in\langle u\rangle^\perp</math> выполнено <math>\mathrm{rot}_g(w)=\cos(2\varphi)\,w+\sin(2\varphi)\,u\times w</math>.<br>(4) Обозначая через <math>\,\mathrm{rot}</math> отображение <math>\biggl(\!\begin{align}\mathrm S^3\!&\to\mathrm{SO}(\mathbb H_\mathrm{vect})\\g&\mapsto\mathrm{rot}_g\end{align}\!\biggr)</math>, имеем следующие факты: <math>\mathrm{rot}</math> — гомоморфизм групп, <math>\mathrm{Ker}\,\mathrm{rot}=\{1,-1\}</math> и<br><math>\mathrm{Im}\,\mathrm{rot}=\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (и, значит, <math>\mathrm S^3\!/\{1,-1\}\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> и <math>\,\mathrm{SU}(2)/\{\mathrm{id}_2,-\mathrm{id}_2\}\cong\mathrm{SO}(3)</math>).</i></ul>-->

Версия 23:00, 5 июля 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Поляризация квадратичн. формы (): . Утверждение: .
  • Поляризация ¯-квадратичной формы (): . Утверждение: .
  • Теорема о биекции между билинейными формами и квадратичными формами.
    (1) Пусть — поле, и — вект. пр.-во над ; тогда отобр.-е — изоморфизм векторных пространств.
    (2) Пусть — векторное пространство над полем ; тогда отображение — изоморфизм векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено
    (1) и ;
    (2) (это индуктивная формула для нахождения векторов ).
  • Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Векторные пространства с ¯-симметричной ¯-билинейной формой над или

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Утверждение: пусть и ; тогда и, если , то форма невырождена (и, значит, ).
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Теорема об ортогональном проектировании. Расст.-е между вектором и подпр.-вом: .

    Теорема об ортогональном проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) для любых и выполнено и (это неравенство Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
3.2.3  Объем и векторное произведение
  • Псевдоевклидово пространство сигнатуры — конечномерное вект. пр.-во над с невырожд. симметричной билинейной формой сигнатуры .
  • Псевдоунитарное пр.-во сигнатуры — конечномерное вект. пр.-во над с невырожд. ¯-симметричной полуторалинейной формой сигнатуры .
  • Форма объема в ориентированном псевдоевклидовом простр.-ве (): . Корректность определения формы .
  • Объем в коорд. (): (). Теорема об объеме и матрицах Грама.

    Теорема об объеме и матрицах Грама. Пусть — ориентированное псевдоевклидово пространство (относительно билинейной формы ),
    , и ; тогда (в частности, если векторы попарно
    ортогональны, то ).

  • Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, и ; тогда
    (1) , где и ;
    (2) если , то .
  • Вект. пр.-е в ориентир. псевдоевкл. пр.-ве: ().
  • Вект. произведение в коорд.: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — ориентированное евклидово пространство, и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и ;
    (3) если , то для любых выполнено и .

3.3  Линейные операторы и ¯-билинейные формы

3.3.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (2) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

3.3.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов (, или ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
    и ; тогда , а также и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и ;
    (3) если и или , то .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
3.3.3  Спектральная теория в унитарных пространствах
  • Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
    для любых выполнено , а также для любых таких , что , выполнено .
  • Спектральная теорема в унитарных пространствах. Пусть — унитарное пространство и ; тогда
    (1) — диагональная матрица;
    (2) — диагон. матрица с числами вида , где , на диагонали;
    (3) — диагон. матрица с вещественными числами на диагонали;
    (4) — диагон. матрица с числами вида , где , на диагонали;
    (5) — диагон. матрица с положительными числами на диагонали.
  • Матричная формулировка спектральной теоремы в унитарных пространствах. Пусть и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Ортогональный проектор: . Спектральное разложение нормального оператора : .
  • Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.
    (1) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , , а также
    для любых двух различных собственных чисел и оператора выполнено .
    (2) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , а также для любых двух различных
    собственных чисел и оператора выполнено .
  • Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
3.3.4  Спектральная теория в евклидовых пространствах
  • -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
  • -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
  • Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
    (1) существует такое подпространство пространства , что , и, если , то ;
    (2) если , то для любых выполнено .
  • Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    (1) -диагональная матрица;
    (2) -диаг. матрица с числами , и блоками вида , где , на диагонали
    ;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали
    ;
    (5) — диаг. матрица с положительными числами на диагонали.
  • Матричная формулировка спектральной теоремы в евклидовых пространствах. Пусть и ; тогда
    (1) -диагональная матрица;
    (2) -диаг. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Усиленная теорема Лагранжа для евклидовых и унитарных пространств. Пусть — евклидово или унитарное пространство и ; тогда
    — диагональная матрица (то есть ).