Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<h3>3.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
 
<h3>3.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>v^\mathtt T\!\cdot s\cdot w=\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>), <math>(f,g)\mapsto\!\int_X\!sfg</math>.
+
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>V=K^n</math>, <math>s\in\mathrm{Mat}(n,K)</math>), <math>(f,g)\mapsto\!\int_\alpha^\beta\!\!sfg</math> (<math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math>, <math>s\in V</math>).
<li>Мотивация рассмотрения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
+
<li>Поля с инволюцией. Пространство <math>\overline V</math>: <math>c\overline\cdot v=\overline c\,v</math>. Пространство ¯-билинейных (полуторалинейных, если <math>\overline{\phantom c}\ne\mathrm{id}_K</math>) форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
<li>Матрица Грама формы <math>\sigma</math> (<math>e\in V^n</math>): <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
+
<li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math> (<math>e\in V^n</math>). ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
 
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math> (<math>e\in\mathrm{OB}(V)</math>). Преобразов.-я при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math> (<math>e\in\mathrm{OB}(V)</math>). Преобразов.-я при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
 
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
Строка 13: Строка 13:
 
<li>Группа автоморфизмов простр.-ва с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Iso}((V,\sigma),(V,\sigma))</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math> (<math>s\in\mathrm{Mat}(n,K)</math>).</ul>
 
<li>Группа автоморфизмов простр.-ва с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Iso}((V,\sigma),(V,\sigma))</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math> (<math>s\in\mathrm{Mat}(n,K)</math>).</ul>
  
<!--<h5>3.1.2&nbsp; ¯-Квадратичные формы</h5>
+
<h5>3.1.2&nbsp; ¯-Квадратичные формы</h5>
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>.
+
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\,\overline c\,\kappa(v)</math>.
<li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
+
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: мн.-во вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
+
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v-w)\bigr)/4\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li>Примеры кривых второго порядка (<math>\dim V=2</math>, <math>e\in\mathrm{OB}(V)</math>): <math>\{v\in V\mid(v^1)^2+(v^2)^2=1\}</math>, <math>\{v\in V\mid(v^1)^2-(v^2)^2=1\}</math>, <math>\{v\in V\mid(v^1)^2=v^2\}</math>.
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующие факты:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>) и <math>\forall\,v\in V\;\bigl(\kappa(v)=\mathrm{pol}_\kappa(v,v)\bigr)</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — изоморфизм векторных пространств.</i>
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math>, <math>\sigma\in\mathrm{SBi}(V)</math> или <math>K=\mathbb C</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
+
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>) и <math>\forall\,v\in V\;\bigl(\kappa(v)=\mathrm{pol}_\kappa(v,v)\bigr)</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — изоморфизм векторных пространств.</i>
 +
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math> и <math>\sigma\in\mathrm{SBi}(V)</math>, или <math>K=\mathbb C</math> и <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\,\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
  
<h5>3.1.3&nbsp; Невырожденные ¯-билинейные формы</h5>
+
<!--<h5>3.1.3&nbsp; Невырожденные ¯-билинейные формы</h5>
 
<ul><li>Опускание индексов: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индексов в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>.
 
<ul><li>Опускание индексов: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индексов в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\downarrow_\sigma</math> — биекция<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\downarrow_\sigma</math> — биекция<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.

Версия 17:30, 26 июня 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Пространство ¯-билинейных (полуторалинейных, если ) форм: .
  • Матрица Грама формы : (). ¯-Билинейная форма в координатах: .
  • Изоморфизм (). Преобразов.-я при замене базиса: и .
  • Простр.-ва (над полем ) и .
  • Пр.-ва (над полем ) и .
  • , .
  • Группа автоморфизмов простр.-ва с формой: и ().
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры кривых второго порядка (, ): , , .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ) и ;
    (2) отображение — изоморфизм векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение ,
    имеем следующие факты: — полуторалинейная форма (то есть ) и ;
    (2) отображение — изоморфизм векторных пространств.
  • Утверждение: пусть и , или и ; тогда .