Алгебра phys 1 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 50: | Строка 50: | ||
<li>Обратимые элементы: <math>M^\times\!=\{m\in M\mid\exists\,m'\in M\;\bigl(m'\,m=m\,m'=1\bigr)\}</math>. Единственность обратного элемента. Утверждение: <math>M^\times\!\cdot M^\times\!\subseteq M^\times</math>. | <li>Обратимые элементы: <math>M^\times\!=\{m\in M\mid\exists\,m'\in M\;\bigl(m'\,m=m\,m'=1\bigr)\}</math>. Единственность обратного элемента. Утверждение: <math>M^\times\!\cdot M^\times\!\subseteq M^\times</math>. | ||
<li>Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа <math>M^\times</math> (<math>M</math> — моноид). Таблица Кэли. Изоморфные группы: <math>G\cong J</math>. | <li>Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа <math>M^\times</math> (<math>M</math> — моноид). Таблица Кэли. Изоморфные группы: <math>G\cong J</math>. | ||
− | <li>Примеры: числовые группы, группы функций <math>\mathrm{Func}(X,G)</math>, свободные группы <math>\mathrm F(x_1,\ldots,x_n)</math>, группы биекций <math>\mathrm{Bij}(X)</math> | + | <li>Примеры: числовые группы, группы остатков, группы функций <math>\mathrm{Func}(X,G)</math>, свободные группы <math>\mathrm F(x_1,\ldots,x_n)</math>, группы биекций <math>\mathrm{Bij}(X)</math> (<math>=\mathrm{Map}(X)^\times\!</math>). |
<li>Мультипликативные обозначения в группе <math>G</math>: <math>g\,h</math>, <math>1</math>, <math>g^{-1}</math> и <math>g^n</math> (<math>n\in\mathbb Z</math>). Аддитивные обозначения в абелевой группе <math>A</math>: <math>a+b</math>, <math>0</math>, <math>-a</math> и <math>n\,a</math> (<math>n\in\mathbb Z</math>). | <li>Мультипликативные обозначения в группе <math>G</math>: <math>g\,h</math>, <math>1</math>, <math>g^{-1}</math> и <math>g^n</math> (<math>n\in\mathbb Z</math>). Аддитивные обозначения в абелевой группе <math>A</math>: <math>a+b</math>, <math>0</math>, <math>-a</math> и <math>n\,a</math> (<math>n\in\mathbb Z</math>). | ||
<li>Симметрические группы: <math>\mathrm S_n=\mathrm{Bij}(\{1,\ldots,n\})</math>. Запись перестановки в виде послед.-сти значений, цикловая запись перестановки. Лемма о циклах. | <li>Симметрические группы: <math>\mathrm S_n=\mathrm{Bij}(\{1,\ldots,n\})</math>. Запись перестановки в виде послед.-сти значений, цикловая запись перестановки. Лемма о циклах. | ||
− | <p><u>Лемма о циклах.</u> <i>Пусть <math>l,m,n\in\mathbb N</math>, <math>i_1,\ldots,i_l,j_1,\ldots,j_m,k\in\{1,\ldots,n\}</math>, числа <math>i_1,\ldots,i_l,j_1,\ldots,j_m,k</math> попарно различны и <math>u\in\mathrm S_n</math>; тогда<br><math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>, а также <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}\!=(u(i_1)\;\ldots\;u(i_l))</math>.</i></p></ul> | + | <p><u>Лемма о циклах.</u> <i>Пусть <math>l,m,n\in\mathbb N</math>, <math>i_1,\ldots,i_l,j_1,\ldots,j_m,k\in\{1,\ldots,n\}</math>, числа <math>i_1,\ldots,i_l,j_1,\ldots,j_m,k</math> попарно различны и <math>u\in\mathrm S_n</math>; тогда<br><math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>, а также <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}\!=(u(i_1)\;\ldots\;u(i_l))</math>.</i></p> |
+ | <li>Группа изометрий пр.-ва <math>\mathbb R^n</math>: <math>\mathrm{Isom}(\mathbb R^n)=\{f\in\mathrm{Bij}(\mathbb R^n)\mid\forall\,v,v'\in\mathbb R^n\,\bigl(\|f(v)-f(v')\|=\|v-v'\|\bigr)\}</math> (<math>\|(v^1,\ldots,v^n)\|=\!\sqrt{(v^1)^2+\ldots+(v^n)^2}</math>).</ul> | ||
<h5>1.2.3 Подгруппы, классы смежности, циклические группы</h5> | <h5>1.2.3 Подгруппы, классы смежности, циклические группы</h5> | ||
Строка 65: | Строка 66: | ||
<li><u>Теорема об обратимых остатках.</u><br><i>(1) Пусть <math>n\in\mathbb N</math> и <math>a\in(\mathbb Z/n)^+\!</math>; тогда <math>\mathrm{ord}(a)=\frac n{\gcd(a,n)}</math>.<br>(2) Пусть <math>n\in\mathbb N</math>; тогда <math>(\mathbb Z/n)^\times\!=\{a\in\mathbb Z/n\mid\gcd(a,n)=1\}</math> (в частности, если <math>p\in\mathbb P</math>, то <math>(\mathbb Z/p)^\times\!=(\mathbb Z/p)\!\setminus\!\{0\}</math>).<br>(3) Пусть <math>p\in\mathbb P</math>, <math>a\in\mathbb Z</math> и <math>p</math> не делит <math>a</math>; тогда <math>a^{p-1}\!\equiv1\;(\mathrm{mod}\;p)</math> (это малая теорема Ферма).</i> | <li><u>Теорема об обратимых остатках.</u><br><i>(1) Пусть <math>n\in\mathbb N</math> и <math>a\in(\mathbb Z/n)^+\!</math>; тогда <math>\mathrm{ord}(a)=\frac n{\gcd(a,n)}</math>.<br>(2) Пусть <math>n\in\mathbb N</math>; тогда <math>(\mathbb Z/n)^\times\!=\{a\in\mathbb Z/n\mid\gcd(a,n)=1\}</math> (в частности, если <math>p\in\mathbb P</math>, то <math>(\mathbb Z/p)^\times\!=(\mathbb Z/p)\!\setminus\!\{0\}</math>).<br>(3) Пусть <math>p\in\mathbb P</math>, <math>a\in\mathbb Z</math> и <math>p</math> не делит <math>a</math>; тогда <math>a^{p-1}\!\equiv1\;(\mathrm{mod}\;p)</math> (это малая теорема Ферма).</i> | ||
<li>Циклическая группа: <math>\exists\,d\in G\;\bigl(G=\langle d\rangle\bigr)</math>. Примеры: <math>(\mathbb Z/n)^+</math> для любых <math>n\in\mathbb N</math>, <math>\mathbb Z^+</math>, <math>(\mathbb Z/n)^\times</math> для некоторых <math>n\in\mathbb N</math>. Теорема о циклических группах. | <li>Циклическая группа: <math>\exists\,d\in G\;\bigl(G=\langle d\rangle\bigr)</math>. Примеры: <math>(\mathbb Z/n)^+</math> для любых <math>n\in\mathbb N</math>, <math>\mathbb Z^+</math>, <math>(\mathbb Z/n)^\times</math> для некоторых <math>n\in\mathbb N</math>. Теорема о циклических группах. | ||
− | <p><u>Теорема о циклических группах.</u> <i>Пусть <math>G</math> — циклическая группа и <math>n=|G|</math>; тогда, если <math>n\in\mathbb N</math>, то <math>G\cong(\mathbb Z/n)^+ | + | <p><u>Теорема о циклических группах.</u> <i>Пусть <math>G</math> — циклическая группа и <math>n=|G|</math>; тогда, если <math>n\in\mathbb N</math>, то <math>G\cong(\mathbb Z/n)^+</math>, и, если <math>n=\infty</math>, то <math>G\cong\mathbb Z^+</math>.</i></p></ul> |
<h5>1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп</h5> | <h5>1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп</h5> |
Версия 22:00, 7 июня 2017
1 Основы алгебры
| ||||||||||||
|
1.1 Множества, отображения, отношения
1.1.1 Множества
- Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
- Лемма о логических связках. Пусть — высказывания; тогда
(1) , , , ;
(2) , ;
(3) , , , . - Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
- Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
- Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
- Лемма об операциях над множествами. Пусть — множества; тогда
(1) , , , ;
(2) , ;
(3) если — множество и , то и . - Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
- — порядок (количество элементов) множества , — множество подмножеств множества , — -я степень множества ().
1.1.2 Отображения
- Множество отображений, действующих из мн.-ва в мн.-во : . Область, кообласть, график отображения : , , .
- Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
- Сужения отображения ( и ): и . Сокращенная запись образа: .
- Инъекции: . Сюръекции: .
- Биекции: . Композиция отображений: . Тождественное отображение: .
- Теорема о композиции отображений. Пусть — множества и ; тогда
(1) , и, если — множества, и , то ;
(2) если , то — инъекция, если и только если ;
(3) — сюръекция, если и только если ;
(4) — биекция, если и только если . - Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3 Отношения
- Множество отношений между множествами и : . Область, кообласть, график отношения : , , . Примеры.
- Отношения эквивалентности: .
- Класс эквивалентности: . Утверждение: . Фактормножество: .
- Разбиения: . Утверждение: . Трансверсали.
- Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
- Отношение : . Слои отображения : (). Факторотображение — биекция.
- Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .
1.2 Группы (часть 1)
1.2.1 Множества с операцией
- Внутренняя -арная операция на — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
- Гомоморфизмы между мн.-вами с операцией: .
- Изоморфизмы: . Эндоморфизмы мн.-ва с опер.: . Автоморфизмы: .
- Теорема о композиции гомоморфизмов. Пусть и — множества с -арной операцией; тогда
(1) для любых и выполнено ;
(2) для любых выполнено . - Обозначение по Минковскому: . Примеры: , , .
- Инфиксная запись бинарных операций. Ассоциативность: . Коммутативность: .
- Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).
1.2.2 Моноиды и группы (основные определения и примеры)
- Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
- Примеры: числовые моноиды, моноиды функций , моноиды слов и , моноиды отображений .
- Обратимые элементы: . Единственность обратного элемента. Утверждение: .
- Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
- Примеры: числовые группы, группы остатков, группы функций , свободные группы , группы биекций ().
- Мультипликативные обозначения в группе : , , и (). Аддитивные обозначения в абелевой группе : , , и ().
- Симметрические группы: . Запись перестановки в виде послед.-сти значений, цикловая запись перестановки. Лемма о циклах.
Лемма о циклах. Пусть , , числа попарно различны и ; тогда
, а также . - Группа изометрий пр.-ва : ().
1.2.3 Подгруппы, классы смежности, циклические группы
- Подгруппа: . Подгруппа, порожденная мн.-вом : — наименьшая подгруппа, содержащая .
- Утверждение: , а также . Пример: .
- Отношения и : () и (). Утверждение: и .
- Множества классов смежности: и . Теорема Лагранжа. Индекс: .
Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).
- Порядок элемента: (). Утверждение: пусть ; тогда .
- Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
- Теорема об обратимых остатках.
(1) Пусть и ; тогда .
(2) Пусть ; тогда (в частности, если , то ).
(3) Пусть , и не делит ; тогда (это малая теорема Ферма). - Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.
Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .
1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп
- Нормальная подгруппа: . Пример: .
- Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
- Нормальная подгруппа, порожденная множеством : — наименьшая нормальная подгруппа, содержащая . Утверждение: .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — группы и ; тогда .
- Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
- Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то в пункте (2) условие "" можно заменить на условие "".
1.3 Кольца (часть 1)
1.3.1 Определения и конструкции, связанные с кольцами
- Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
- Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
- Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
- Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.
Теорема о гомоморфизме. Пусть — кольца и ; тогда .
- Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
- Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2 Кольца многочленов
- Кольцо многочленов от переменной над кольцом : ; отождествл.-е и ; общий вид многочлена: .
- Умножение в . Степень и старший коэфф.-т. Утверждение: . Делимость в ( — комм. кольцо): .
- Неприводимые многочлены в : . Пример: ( — поле).
- Лемма о делении с остатком. Операции и (старший коэфф.-т многочл. обратим): и .
Лемма о делении с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
существуют единственные такие многочлены , что и . - Кольцо остатков по модулю многочлена ( — поле, ): . Утверждение: .
- Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
- Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.
Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).
Теорема о корнях многочлена. Пусть — область целостности и ; тогда .
Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .
1.3.3 Поле комплексных чисел
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Единичная окружность в : . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
(2) Для любых выполнено (и, значит, ). - Тригонометрическая форма компл. числа: . Утверждение: .
- Группа корней -й степени из : . Первообразные корни -й степени из .
- Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
- Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4 Тело кватернионов
- Кольцо кватернионов: , где , а также , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
- Лемма об умножении кватернионов. Сопряжение: . Модуль: . Утверждение: .
Лемма об умножении кватернионов. Для любых и выполнено .
- Теорема о свойствах кватернионов.
(1) Для любых выполнено и, если , то (и, значит, — тело).
(2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .
- Изометрии в : (доказательство только включения ).
- Изометрии в : (док.-во только ).