Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 85: Строка 85:
 
<p><u>Лемма о замене координат.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math>, <math>\gamma\in\mathrm{Curv}_m(M)</math> и <math>\xi,\tilde\xi\in\mathcal A_m</math>; тогда<br>(1) <math>\gamma'(0)^\tilde\xi=\mathrm c_\xi^\tilde\xi(m)\cdot\gamma'(0)^\xi</math> (это матричная запись) и <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\gamma'(0)^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,\gamma'(0)^k\Bigr)</math> (это покомпонентная запись);<br>(2) для любых <math>\breve\gamma\in\mathrm{Curv}_m(M)</math> выполнено <math>\gamma'(0)^\xi=\breve\gamma'(0)^\xi\,\Leftrightarrow\,\gamma'(0)^\tilde\xi=\breve\gamma'(0)^\tilde\xi</math>.</i></p></ul>
 
<p><u>Лемма о замене координат.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math>, <math>\gamma\in\mathrm{Curv}_m(M)</math> и <math>\xi,\tilde\xi\in\mathcal A_m</math>; тогда<br>(1) <math>\gamma'(0)^\tilde\xi=\mathrm c_\xi^\tilde\xi(m)\cdot\gamma'(0)^\xi</math> (это матричная запись) и <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\gamma'(0)^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,\gamma'(0)^k\Bigr)</math> (это покомпонентная запись);<br>(2) для любых <math>\breve\gamma\in\mathrm{Curv}_m(M)</math> выполнено <math>\gamma'(0)^\xi=\breve\gamma'(0)^\xi\,\Leftrightarrow\,\gamma'(0)^\tilde\xi=\breve\gamma'(0)^\tilde\xi</math>.</i></p></ul>
  
<h5>2.5.2&nbsp; Касательное пространство и кокасательное пространство</h5>
+
<h5>2.5.2&nbsp; Касательные пространства и кокасательные пространства</h5>
 
<ul><li>Отношение касания в точке <math>m</math>: <math>\gamma\underset{\scriptscriptstyle m}\sim\breve\gamma\,\Leftrightarrow\,\exists\,\xi\in\mathcal A_m\,\bigl(\gamma'(0)^\xi=\breve\gamma'(0)^\xi\bigr)</math>. Инвариантная скорость (<math>\gamma\in\mathrm{Curv}_m(M)</math>): <math>\gamma'(0)=\mathrm{cl}\,_\underset{\scriptscriptstyle m}\sim(\gamma)\in\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>.
 
<ul><li>Отношение касания в точке <math>m</math>: <math>\gamma\underset{\scriptscriptstyle m}\sim\breve\gamma\,\Leftrightarrow\,\exists\,\xi\in\mathcal A_m\,\bigl(\gamma'(0)^\xi=\breve\gamma'(0)^\xi\bigr)</math>. Инвариантная скорость (<math>\gamma\in\mathrm{Curv}_m(M)</math>): <math>\gamma'(0)=\mathrm{cl}\,_\underset{\scriptscriptstyle m}\sim(\gamma)\in\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>.
 
<li>Касательное пр.-во в точке <math>m</math>: <math>\mathrm T_mM=\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>. Базисные векторы, определ. системой координат <math>\xi</math>: <math>\frac\partial{\partial x^i}(m)=\bigl(\tau\mapsto\xi^{-1}(\xi(m)+\tau\underline e_i)\bigr)'(0)</math>.
 
<li>Касательное пр.-во в точке <math>m</math>: <math>\mathrm T_mM=\mathrm{Curv}_m(M)/\!\underset{\scriptscriptstyle m}\sim</math>. Базисные векторы, определ. системой координат <math>\xi</math>: <math>\frac\partial{\partial x^i}(m)=\bigl(\tau\mapsto\xi^{-1}(\xi(m)+\tau\underline e_i)\bigr)'(0)</math>.
 
<li>Теорема о касательном пространстве. Преобразования при замене координат на <math>M</math>: <math>v^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,v^k</math> и <math>\frac\partial{\partial x^\tilde i}(m)=\sum_{k=1}^n\frac{\partial x^k}{\partial x^\tilde i}(\tilde\xi(m))\,\frac\partial{\partial x^k}(m)</math>.
 
<li>Теорема о касательном пространстве. Преобразования при замене координат на <math>M</math>: <math>v^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\xi(m))\,v^k</math> и <math>\frac\partial{\partial x^\tilde i}(m)=\sum_{k=1}^n\frac{\partial x^k}{\partial x^\tilde i}(\tilde\xi(m))\,\frac\partial{\partial x^k}(m)</math>.
<p><u>Теорема о касательном пространстве.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math> и <math>\xi\in\mathcal A_m</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\gamma'(0)</math>, и обозначая через <math>v^\xi</math> столбец <math>\gamma'(0)^\xi</math>, имеем следующий факт:<br>столбец <math>v^\xi</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R^n\\v&\mapsto v^\xi\end{align}\!\biggr)</math> — биекция; определим на множестве <math>\,\mathrm T_mM</math> структуру векторного пространства над полем <math>\,\mathbb R</math> так, чтобы<br>эта биекция стала изоморфизмом векторных пространств; тогда эта структура не зависит от выбора системы координат <math>\xi</math>;<br>(3) множество <math>\Bigl\{\frac\partial{\partial x^1}(m),\ldots,\frac\partial{\partial x^n}(m)\Bigr\}</math> — базис пространства <math>\,\mathrm T_mM</math>;<br>(4) для любых <math>v\in\mathrm T_mM</math> выполнено <math>v=\sum_{i=1}^n(v^\xi)^i\frac\partial{\partial x^i}(m)</math> (это формула разложения по базису в <math>\,\mathrm T_mM</math>).</i></p>
+
<p><u>Теорема о касательном пространстве.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math>, <math>m\in M</math> и <math>\xi\in\mathcal A_m</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\gamma'(0)</math>, и обозначая через <math>v^\xi</math> столбец <math>\gamma'(0)^\xi</math>, имеем следующий факт:<br>столбец <math>v^\xi</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R^n\\v&\mapsto v^\xi\end{align}\!\biggr)</math> — биекция; определим на <math>\,\mathrm T_mM</math> структуру вект. простр.-ва над <math>\,\mathbb R</math> так, чтобы эта биекция стала изоморфизмом<br>вект. простр.-в (то есть <math>\forall\,v,w\in\mathrm T_mM,\,c,d\in\mathbb R\;\bigl((c\,v+d\,w)^\xi=c\,v^\xi+d\,w^\xi\bigr)</math>); тогда эта структура не зависит от выбора системы координат <math>\xi</math>;<br>(3) множество <math>\Bigl\{\frac\partial{\partial x^1}(m),\ldots,\frac\partial{\partial x^n}(m)\Bigr\}</math> — базис пространства <math>\,\mathrm T_mM</math>;<br>(4) для любых <math>v\in\mathrm T_mM</math> выполнено <math>v=\sum_{i=1}^n(v^\xi)^i\frac\partial{\partial x^i}(m)</math> (это формула разложения по базису в <math>\,\mathrm T_mM</math>).</i></p>
 
<li>Кокасательное пр.-во в точке <math>m</math>: <math>\mathrm T^*_mM=(\mathrm T_mM)^*</math>. Базисные ковекторы, определ. сист. коорд. <math>\xi</math>: <math>\mathrm dx^j(m)=\Bigl(\frac\partial{\partial x^j}(m)\Bigr)^{\!*}</math>. Строка коорд. ковектора: <math>\lambda_\xi</math>.
 
<li>Кокасательное пр.-во в точке <math>m</math>: <math>\mathrm T^*_mM=(\mathrm T_mM)^*</math>. Базисные ковекторы, определ. сист. коорд. <math>\xi</math>: <math>\mathrm dx^j(m)=\Bigl(\frac\partial{\partial x^j}(m)\Bigr)^{\!*}</math>. Строка коорд. ковектора: <math>\lambda_\xi</math>.
 
<li>Разложение по базису в <math>\mathrm T^*_mM</math>: <math>\lambda=\sum_{j=1}^n(\lambda_\xi)_j\,\mathrm dx^j(m)</math>. Преобр.-я при замене координат: <math>\lambda_\tilde j=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\xi(m))\,\lambda_l</math> и <math>\mathrm dx^\tilde j(m)=\sum_{l=1}^n\frac{\partial x^\tilde j}{\partial x^l}(\xi(m))\,\mathrm dx^l(m)</math>.
 
<li>Разложение по базису в <math>\mathrm T^*_mM</math>: <math>\lambda=\sum_{j=1}^n(\lambda_\xi)_j\,\mathrm dx^j(m)</math>. Преобр.-я при замене координат: <math>\lambda_\tilde j=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\xi(m))\,\lambda_l</math> и <math>\mathrm dx^\tilde j(m)=\sum_{l=1}^n\frac{\partial x^\tilde j}{\partial x^l}(\xi(m))\,\mathrm dx^l(m)</math>.
<li><u>Теорема о дифференциале функции.</u> <i>Пусть <math>M</math> — многообразие, <math>m\in M</math> и <math>f\in\mathrm{Func}(M)</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\gamma'(0)</math>, и обозначая через <math>(\mathrm df(m))(v)</math> число <math>(f\circ\gamma)'(0)</math>, имеем<br>следующий факт: число <math>(\mathrm df(m))(v)</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) для любых <math>v\in\mathrm T_mM</math> и <math>\xi\in\mathcal A_m</math> выполнено <math>(\mathrm df(m))(v)=\mathrm d(f\circ\xi^{-1})(\xi(m))\cdot v^\xi</math>;<br>(3) обозначая через <math>\mathrm df(m)</math> отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R\\v&\mapsto(\mathrm df(m))(v)\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm df(m)</math> — ковектор (то есть <math>\mathrm df(m)\in\mathrm T^*_mM</math>).</i>
+
<li><u>Теорема о дифференциале функции.</u> <i>Пусть <math>M</math> — многообразие, <math>m\in M</math> и <math>f\in\mathrm{Func}(M)</math>; тогда<br>(1) для любых <math>v\in\mathrm T_mM</math>, выбирая такую кривую <math>\gamma\in\mathrm{Curv}_m(M)</math>, что <math>v=\gamma'(0)</math>, и обозначая через <math>(\mathrm df(m))(v)</math> число <math>(f\circ\gamma)'(0)</math>, имеем<br>следующий факт: число <math>(\mathrm df(m))(v)</math> не зависит от выбора кривой <math>\gamma</math>;<br>(2) для любых <math>v\in\mathrm T_mM</math> и <math>\xi\in\mathcal A_m</math> выполнено <math>(\mathrm df(m))(v)=\mathrm d(f\circ\xi^{-1})(\xi(m))\cdot v^\xi</math>;<br>(3) обозначая через <math>\mathrm df(m)</math> отображение <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathbb R\\v&\mapsto(\mathrm df(m))(v)\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm df(m)\in\mathrm T^*_mM</math>.</i>
 
<li>Дифференциал в координатах: <math>\mathrm df(m)_\xi=\mathrm d(f\circ\xi^{-1})(\xi(m))\in\mathbb R_n</math> и <math>(\mathrm df(m)_\xi)_j=\frac{\partial(f\circ\xi^{-1})}{\partial x^j}(\xi(m))=\partial_jf(m)</math>; тогда <math>\mathrm df(m)=\sum_{j=1}^n\partial_jf(m)\,\mathrm dx^j(m)</math>.
 
<li>Дифференциал в координатах: <math>\mathrm df(m)_\xi=\mathrm d(f\circ\xi^{-1})(\xi(m))\in\mathbb R_n</math> и <math>(\mathrm df(m)_\xi)_j=\frac{\partial(f\circ\xi^{-1})}{\partial x^j}(\xi(m))=\partial_jf(m)</math>; тогда <math>\mathrm df(m)=\sum_{j=1}^n\partial_jf(m)\,\mathrm dx^j(m)</math>.
 
<li>Производная Ли функции вдоль вектора (<math>v\in\mathrm T_mM</math>): <math>\mathcal L_v(f)=(\mathrm df(m))(v)</math>. Утверждение: <i><math>\mathcal L_v(fg)=\mathcal L_v(f)\,g(m)+f(m)\,\mathcal L_v(g)</math> и <math>\mathcal L_{\!\frac\partial{\partial x^i}(m)\!}(f)=\partial_if(m)</math></i>.</ul>
 
<li>Производная Ли функции вдоль вектора (<math>v\in\mathrm T_mM</math>): <math>\mathcal L_v(f)=(\mathrm df(m))(v)</math>. Утверждение: <i><math>\mathcal L_v(fg)=\mathcal L_v(f)\,g(m)+f(m)\,\mathcal L_v(g)</math> и <math>\mathcal L_{\!\frac\partial{\partial x^i}(m)\!}(f)=\partial_if(m)</math></i>.</ul>
Строка 105: Строка 105:
 
<li>Тенз. поля типа <math>(0,k)</math> в коорд.: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. Преобр.-е при замене: <math>\omega_{\tilde j_1,\ldots,\tilde j_k}\!=\!\!\!\sum_{1\le l_1,\ldots,l_k\le n}\!\!\!\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_k}}{\partial x^\tilde{j_k}}\!\circ\tilde\xi\Bigr)\,\omega_{l_1,\ldots,l_k}</math>.
 
<li>Тенз. поля типа <math>(0,k)</math> в коорд.: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. Преобр.-е при замене: <math>\omega_{\tilde j_1,\ldots,\tilde j_k}\!=\!\!\!\sum_{1\le l_1,\ldots,l_k\le n}\!\!\!\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_k}}{\partial x^\tilde{j_k}}\!\circ\tilde\xi\Bigr)\,\omega_{l_1,\ldots,l_k}</math>.
 
<li>Произв.-я Ли функции вдоль вект. поля: <math>\mathcal L_v(f)=\mathrm df(v)</math>. Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: <math>[v,w]^i=\sum_{j=1}^n\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)</math>.
 
<li>Произв.-я Ли функции вдоль вект. поля: <math>\mathcal L_v(f)=\mathrm df(v)</math>. Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: <math>[v,w]^i=\sum_{j=1}^n\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)</math>.
<p><u>Теорема об алгебре Ли векторных полей.</u> <i>Пусть <math>M</math> — многообразие; тогда<br>(1) для любых <math>v\in\mathrm{Vect}(M)</math> имеем следующий факт: <math>\mathcal L_v</math> — дифференцирование алгебры <math>\,\mathrm{Func}(M)</math> (то есть <math>\mathcal L_v\!\in\mathrm{Der}(\mathrm{Func}(M))</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm{Func}(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный линейный оператор, и его образ — подалгебра алгебры Ли <math>\,\mathrm{Der}(\mathrm{Func}(M))</math>;<br>определим на векторном пространстве <math>\,\mathrm{Vect}(M)</math> бинарную операцию <math>[\,,]</math> так, чтобы этот инъективный линейный оператор стал гомоморфизмом<br>алгебр Ли; тогда <math>\,\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>.</i></p></ul>
+
<p><u>Теорема об алгебре Ли векторных полей.</u> <i>Пусть <math>M</math> — многообразие; тогда<br>(1) для любых <math>v\in\mathrm{Vect}(M)</math> имеем следующий факт: <math>\mathcal L_v</math> — дифференцирование алгебры <math>\,\mathrm{Func}(M)</math> (то есть <math>\mathcal L_v\!\in\mathrm{Der}(\mathrm{Func}(M))</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm{Func}(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный линейный оператор, и его образ — подалгебра алгебры Ли <math>\,\mathrm{Der}(\mathrm{Func}(M))</math>;<br>определим на векторном пространстве <math>\,\mathrm{Vect}(M)</math> бинарную операцию <math>[\,,]</math> так, чтобы этот инъективный линейный оператор стал гомоморфизмом<br>алгебр Ли (то есть <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_{[v,w]}=[\mathcal L_v,\mathcal L_w]\bigr)</math>); тогда <math>\,\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>.</i></p></ul>

Версия 03:00, 10 мая 2017

2  Линейная алгебра

2.3  Линейные операторы (часть 2)

2.3.1  Многочлены от линейных операторов, спектр и характеристический многочлен линейного оператора
  • Эвалюация — гомоморфизм. Кольцо, порожденное лин. оператором : .
  • Минимальный многочлен лин. оператора : , нормирован, ; .
  • Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если , то (то есть -инвариантное подпространство);
    (2) если и делит , то ;
    (3) если , и многочлены попарно взаимно просты, то
    (и, значит, ).
  • Проектор (идемпотент): . Отражение: (здесь ).
  • Собственные число и вектор лин. операт. : . Спектр лин. операт. : . Лемма о спектре.

    Лемма о спектре. Пусть — поле, — векторное простр.-во над полем и ; тогда
    и, если , то "" можно заменить на "".

  • Характеристический многочлен матрицы : . Характеристический многочлен лин. оператора : . Корректность опред.-я.
  • След линейного оператора : . Корректность определения. Теорема о спектре и характеристическом многочлене. Теорема Гамильтона–Кэли.

    Теорема о спектре и характеристическом многочлене. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) (и, значит, );
    (2) ;
    (3) если (то есть — нильпотентный линейный оператор), то .

    Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .

  • Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.

    Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) делит (и, значит, для любых выполнено );
    (2) .

2.3.2  Собственные, обобщенные собственные и корневые подпространства линейного оператора
  • Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.

    Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
    попарно различны; тогда
    (1) ;
    (2) если и — независимые множества, то — независимое множество;
    (3) если , то для любых выполнено .

  • Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие утверждения эквивалентны:
    (у1) существует такой упорядоченный базис , что — диагональная матрица;
    (у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
    (у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
    (у4) .
  • Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
  • Жорданова клетка: ; если , то и .
  • Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
    (1) для любых выполнено и, если , то ;
    (2) для любых выполнено ;
    (3) и .
  • Корневые подпространства: . Нильпотентные части линейного оператора : .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
    для любых линейных операторов в силу алгебраической замкнутости поля ); тогда
    (1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
    (2) для любых имеем следующие факты: (и, значит, — нильпотентный лин. оператор) и .
2.3.3  Относительные базисы, жорданова нормальная форма, приложения жордановой нормальной формы
  • — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
  • Базис в относительно — независ. и порожд. подмн.-во в относительно . Две теоремы об относительных базисах (без подробных доказательств).

    Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
    (у1) — базис пространства относительно ;
    (у2) — независимое множество и (и, значит, если , то );
    (у3) для любого вектора существуют единственные такие и , что ;
    (у4) — максимальное независимое множество относительно ;
    (у5) — минимальное порождающее множество относительно .

    Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого порождающего подмножества в относительно можно выделить базис в относительно .

  • Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
    , а также , , и ; тогда
    (1) если — независимое подмножество в относит.-но , то — инъекция и — независимое подмножество в относит.-но ;
    (2) если , то .
  • Диаграммы Юнга. Жорданов блок: — прямая сумма жордановых клеток , где — длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
  • Теорема о жордановой нормальной форме. Обозначение: . Утверждение: пусть и ; тогда .

    Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , , и многочлен
    раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для любых линейных операторов
    в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что матрица
    прямая сумма жордановых блоков по всем .

  • Многочлен (ряд) от жордановой клетки: . Экспонента от лин. операт. : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Пусть — банахово пространство и ; тогда , а также и .
    (2) Пусть и ; тогда , а также и .

  • Однородная система линейных дифференциальных уравн.-й: (, ). Решение системы: , где .

2.4  Алгебры

2.4.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
  • Примеры: -алгебры , , , , , ; -алгебры , , , и с векторным умножением.
  • Структурные константы алгебры: . Утверждение: массив однозначно определяет умножение в алгебре .
  • Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы -алгебр: и .

    Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
    над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — инъективный гомоморфизм алгебр с .

  • Алгебры с делением: и . Любая к./м. ассоц. -алгебра с делением изоморфна , или , или (без док.-ва).
  • Моноидная алгебра ( — моноид): с операцией свертки; способ записи элементов: ().
  • Алгебра многочленов от свободных переменных: . Одночлены: . Степень. Однородные многочлены.
2.4.2  Алгебра полилинейных форм
  • Тензорное произведение полилинейных форм: . Свойства тензорного произведения.
  • Базис в пространстве : . Разложение формы по базису: .
  • Обозначение: . Пример: . Преобразов.-е при замене базиса: .
  • Алгебра полилинейных форм (ковариантных тензоров) над : . Утверждение: — ассоциативная -алгебра с .
  • Теорема об алгебре полилинейных форм. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с ;
    (2) для любых изоморфизм из пункта (1) отображает пространство однородных многочленов степени в пространство .
  • Идеалы и : и .
  • Алгебры многочл. от коммутирующих и антикоммутирующих перем.: и .
2.4.3  Алгебры Ли (основные определения и примеры)
  • -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетворяет тождеству Якоби ().
  • Коммутатор в ассоциативной алгебре : . Алгебра : вект. простр.-во с операцией . Утверждение: алгебра — алгебра Ли.
  • Примеры: , , с векторным умножением — алгебра Ли, так как в алгебре Ли .
  • Матричные алгебры Ли: , , , , .
  • Утверждение: и (здесь или ), а также , , .
  • Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .

    Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; обозначим через векторное пространство над полем , получающееся
    из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — гомоморфизм алгебр Ли.

  • Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
  • Пример: пусть — открытое подмножество в и ; тогда — дифференцирование алгебры .

2.5  Многообразия (часть 1)

2.5.1  Определения и конструкции, связанные с многообразиями
  • -Мерная система координат на топол. пр.-ве — гомеоморфизм между областями в и в ; отн.-е согласованности: — диффеоморфизм.
  • -Мерный атлас на — множество попарно согласованных -мерных систем координат на , области определения которых покрывают . Примеры.
  • -Мерное многообразие — хаусдорфово топологич. пространство (со счетной базой) с максимальным атласом . Примеры: , области в , .
  • Обозначение: . Гладкость отобр.-я в точке : существуют такие и , что — гладкое отобр.-е.
  • Утверждение: гладкость отобр.-я не зависит от выбора систем координат. Множество гладких отображений между многообр.-ми и : .
  • Обозначения: ( — область в , ) — мн.-во кривых, — алгебра функций.
  • Скорость в координатах (, где — область в , , ): и .
  • Обозначения: и (тогда ). Лемма о замене координат.

    Лемма о замене координат. Пусть — многообразие, , , и ; тогда
    (1) (это матричная запись) и (это покомпонентная запись);
    (2) для любых выполнено .

2.5.2  Касательные пространства и кокасательные пространства
  • Отношение касания в точке : . Инвариантная скорость (): .
  • Касательное пр.-во в точке : . Базисные векторы, определ. системой координат : .
  • Теорема о касательном пространстве. Преобразования при замене координат на : и .

    Теорема о касательном пространстве. Пусть — многообразие, , и ; тогда
    (1) для любых , выбирая такую кривую , что , и обозначая через столбец , имеем следующий факт:
    столбец не зависит от выбора кривой ;
    (2) отображение — биекция; определим на структуру вект. простр.-ва над так, чтобы эта биекция стала изоморфизмом
    вект. простр.-в (то есть ); тогда эта структура не зависит от выбора системы координат ;
    (3) множество — базис пространства ;
    (4) для любых выполнено (это формула разложения по базису в ).

  • Кокасательное пр.-во в точке : . Базисные ковекторы, определ. сист. коорд. : . Строка коорд. ковектора: .
  • Разложение по базису в : . Преобр.-я при замене координат: и .
  • Теорема о дифференциале функции. Пусть — многообразие, и ; тогда
    (1) для любых , выбирая такую кривую , что , и обозначая через число , имеем
    следующий факт: число не зависит от выбора кривой ;
    (2) для любых и выполнено ;
    (3) обозначая через отображение , имеем следующий факт: .
  • Дифференциал в координатах: и ; тогда .
  • Производная Ли функции вдоль вектора (): . Утверждение: и .
2.5.3  Векторные поля и ковекторные поля
  • Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
  • Векторные поля и ковекторные поля (-формы): и .
  • Пример: . Сложение и умножение на функцию в и . Действие -формы на векторное поле: .
  • Векторные и ковекторные поля в координатах: и . Преобр.-я при замене: и .
  • Тензорное расслоение типа : . Тензорные поля типа : .
  • Сложение и умножение на функцию в . Действие тенз. поля типа на вект. полей: .
  • Тенз. поля типа в коорд.: . Преобр.-е при замене: .
  • Произв.-я Ли функции вдоль вект. поля: . Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: .

    Теорема об алгебре Ли векторных полей. Пусть — многообразие; тогда
    (1) для любых имеем следующий факт: — дифференцирование алгебры (то есть );
    (2) отображение — инъективный линейный оператор, и его образ — подалгебра алгебры Ли ;
    определим на векторном пространстве бинарную операцию так, чтобы этот инъективный линейный оператор стал гомоморфизмом
    алгебр Ли (то есть ); тогда — алгебра Ли относительно операции .