Алгебра phys 1 апрель–май — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 39: | Строка 39: | ||
<p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>a</math> — нильпотентный линейный оператор, то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\mathrm{jb}_{\Delta(a,0)}(0)</math>;<br>(2) если многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>), то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!\mathrm{jb}_{\Delta(a,c)}(c)</math>.</i></p> | <p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>a</math> — нильпотентный линейный оператор, то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\mathrm{jb}_{\Delta(a,0)}(0)</math>;<br>(2) если многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>), то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!\mathrm{jb}_{\Delta(a,c)}(c)</math>.</i></p> | ||
<li>Многочлен (ряд) от жордановой клетки: <math>f(\mathrm{jc}_n(c))=\sum_{k=0}^{n-1}\frac{f^{(k)}(c)}{k!}\,\mathrm{jc}_n(0)^k</math>. Экспонента от лин. операт. <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты. | <li>Многочлен (ряд) от жордановой клетки: <math>f(\mathrm{jc}_n(c))=\sum_{k=0}^{n-1}\frac{f^{(k)}(c)}{k!}\,\mathrm{jc}_n(0)^k</math>. Экспонента от лин. операт. <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты. | ||
− | <p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Пусть <math>V</math> — банахово пространство и <math>a,b\in\mathrm C^0\mathrm{End}(V)</math>; тогда <math>a\circ b=b\circ a\,\Rightarrow\,\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math>, а также <math>\mathrm e^0\!=\mathrm{id}_V\!</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда <math>\det\mathrm e^a\!=\mathrm e^{\mathrm{tr}\,a}</math>, <math>\mathrm e^{a^\mathtt T}\!\!=(\mathrm e^a)^\mathtt T</math> и <math>\mathrm e^{\overline a^\mathtt T}\!\!=\bigl(\overline{\mathrm e^a}\bigr)^\mathtt T</math>.</i></p> | + | <p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Пусть <math>V</math> — банахово пространство и <math>a,b\in\mathrm C^0\mathrm{End}(V)</math>; тогда <math>a\circ b=b\circ a\,\Rightarrow\,\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math>, а также <math>\mathrm e^0\!=\mathrm{id}_V\!</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда <math>\det\mathrm e^a\!=\mathrm e^{\mathrm{tr}\,a}</math>, а также <math>\mathrm e^{a^\mathtt T}\!\!=(\mathrm e^a)^\mathtt T\!</math> и <math>\mathrm e^{\overline a^\mathtt T}\!\!=\bigl(\overline{\mathrm e^a}\bigr)^\mathtt T</math>.</i></p> |
<li>Однородная система линейных дифференциальных уравнений: <math>y'=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>); решение системы: <math>y(x)=\mathrm e^{xa}\!\cdot v</math>, где <math>v\in\mathbb C^n</math>.</ul> | <li>Однородная система линейных дифференциальных уравнений: <math>y'=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>); решение системы: <math>y(x)=\mathrm e^{xa}\!\cdot v</math>, где <math>v\in\mathbb C^n</math>.</ul> | ||
Строка 64: | Строка 64: | ||
<h5>2.4.3 Алгебры Ли (основные определения и примеры)</h5> | <h5>2.4.3 Алгебры Ли (основные определения и примеры)</h5> | ||
− | <ul><li><math>K</math>-Алгебра Ли — <math>K</math>-алгебра, умножение в которой | + | <ul><li><math>K</math>-Алгебра Ли — <math>K</math>-алгебра, умножение в которой антисимметрично (<math>[a,a]=0</math>) и удовлетворяет тождеству Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>). |
<li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: вект. простр.-во <math>{}_K\!A</math> с операцией <math>[\,,]</math>. Утверждение: <i>алгебра <math>A^-</math> — алгебра Ли</i>. | <li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: вект. простр.-во <math>{}_K\!A</math> с операцией <math>[\,,]</math>. Утверждение: <i>алгебра <math>A^-</math> — алгебра Ли</i>. | ||
<li>Примеры: <math>\mathfrak{gl}(V)=\mathrm{End}(V)^-</math>, <math>\mathfrak{sl}(V)=\{a\in\mathfrak{gl}(V)\mid\mathrm{tr}\,a=0\}</math>, <math>\mathbb R^3</math> с векторным умножением — алгебра Ли, так как <math>v\times w=\frac12[v,w]</math> в алгебре Ли <math>\mathbb H^-</math>. | <li>Примеры: <math>\mathfrak{gl}(V)=\mathrm{End}(V)^-</math>, <math>\mathfrak{sl}(V)=\{a\in\mathfrak{gl}(V)\mid\mathrm{tr}\,a=0\}</math>, <math>\mathbb R^3</math> с векторным умножением — алгебра Ли, так как <math>v\times w=\frac12[v,w]</math> в алгебре Ли <math>\mathbb H^-</math>. | ||
Строка 73: | Строка 73: | ||
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p> | <p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p> | ||
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>. | <li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>. | ||
− | <li>Пример: пусть <math>M</math> — открытое | + | <li>Пример: пусть <math>M</math> — открытое подмножество в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul> |
Версия 14:00, 14 апреля 2017
2 Линейная алгебра
2.3 Линейные операторы (часть 2)
2.3.1 Многочлены от линейных операторов, спектр и характеристический многочлен линейного оператора
- Эвалюация — гомоморфизм. Кольцо, порожденное лин. оператором : .
- Минимальный многочлен лин. оператора : , нормирован, ; .
- Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
(1) если , то (то есть — -инвариантное подпространство);
(2) если и делит , то ;
(3) если , и многочлены попарно взаимно просты, то
(и, значит, ). - Проектор (идемпотент): . Отражение: (здесь ).
- Собственные число и вектор лин. операт. : . Спектр лин. операт. : . Лемма о спектре.
Лемма о спектре. Пусть — поле, — векторное простр.-во над полем и ; тогда
и, если , то "" можно заменить на "". - Характеристический многочлен матрицы : . Характеристический многочлен лин. оператора : . Корректность опред.-я.
- След линейного оператора : . Корректность определения. Теорема о спектре и характеристическом многочлене. Теорема Гамильтона–Кэли.
Теорема о спектре и характеристическом многочлене. Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) (и, значит, );
(2) ;
(3) если (то есть — нильпотентный линейный оператор), то .Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.
Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) делит (и, значит, для любых выполнено );
(2) .
2.3.2 Собственные, обобщенные собственные и корневые подпространства линейного оператора
- Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.
Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
попарно различны; тогда
(1) ;
(2) если и — независимые множества, то — независимое множество;
(3) если , то для любых выполнено . - Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
следующие утверждения эквивалентны:
(у1) существует такой упорядоченный базис , что — диагональная матрица;
(у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
(у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
(у4) . - Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
- Жорданова клетка: ; если , то и .
- Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
(1) для любых выполнено и, если , то ;
(2) для любых выполнено ;
(3) и . - Корневые подпространства: . Нильпотентные части линейного оператора : .
- Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
для любых в силу алгебраической замкнутости поля ); тогда
(1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
(2) для любых выполнено , — нильпотентный линейный оператор и .
2.3.3 Относительные базисы, жорданова нормальная форма, приложения жордановой нормальной формы
- — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
- Базис в относительно — независ. и порожд. подмн.-во в относительно . Три теоремы об относительных базисах (без подробных доказательств).
Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
(у1) — базис пространства относительно ;
(у2) — независимое множество и ;
(у3) для любого вектора существуют единственные такие и , что ;
(у4) — максимальное независимое множество относительно ;
(у5) — минимальное порождающее множество относительно .
Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого порождающего подмножества в относительно можно выделить базис в относительно .
Теорема 3 об относительных базисах. Пусть — поле, — векторное пространство над полем , , — базис в относительно и
— базис в относительно ; тогда и — базис в относительно . - Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
, а также , , и ; тогда
(1) если — независимое подмножество в относит.-но , то — инъекция и — независимое подмножество в относит.-но ;
(2) если , то . - Прямая сумма матриц: . Диаграммы Юнга. Жорданов блок: , где — длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
- Теорема о жордановой нормальной форме. Обозначение: . Утверждение: пусть и ; тогда .
Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) если — нильпотентный линейный оператор, то существует такой упорядоченный базис , что ;
(2) если многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для любых
в силу алгебраической замкнутости поля ), то существует такой упорядоченный базис , что . - Многочлен (ряд) от жордановой клетки: . Экспонента от лин. операт. : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Пусть — банахово пространство и ; тогда , а также и .
(2) Пусть и ; тогда , а также и . - Однородная система линейных дифференциальных уравнений: (, ); решение системы: , где .
2.4 Алгебры
2.4.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
- Примеры: -алгебры , , , , , ; -алгебры , , , и с векторным умножением.
- Структурные константы алгебры: . Утверждение: массив однозначно определяет умножение в алгебре .
- Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы -алгебр: и .
Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — инъективный гомоморфизм алгебр с . - Алгебры с делением: и . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
- Моноидная алгебра ( — моноид): с операцией свертки; способ записи элементов: ().
- Алгебра многочленов от свободных переменных: . Одночлены: . Степень. Однородные многочлены.
2.4.2 Алгебра полилинейных форм
- Тензорное произведение полилинейных форм: . Свойства тензорного произведения.
- Базис в пространстве : . Разложение формы по базису: .
- Обозначение: . Пример: . Преобразов.-е при замене базиса: .
- Алгебра полилинейных форм (ковариантных тензоров) над : . Утверждение: — ассоциативная -алгебра с .
- Теорема об алгебре полилинейных форм. Пусть — поле, — векторное пространство над полем , и ; тогда
(1) отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с ;
(2) для любых изоморфизм из пункта (1) отображает пространство однородных многочленов степени в пространство . - Идеалы и : и .
- Алгебра многочленов от коммутирующих переменных: . Утверждение: .
- Алгебра многочленов от грассмановых переменных: . Грассмановы одночлены: , где .
2.4.3 Алгебры Ли (основные определения и примеры)
- -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетворяет тождеству Якоби ().
- Коммутатор в ассоциативной алгебре : . Алгебра : вект. простр.-во с операцией . Утверждение: алгебра — алгебра Ли.
- Примеры: , , с векторным умножением — алгебра Ли, так как в алгебре Ли .
- Матричные алгебры Ли: , , , , .
- Утверждение: и (здесь или ), а также , , .
- Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: и .
Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; обозначим через векторное пространство над полем , получающееся
из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — гомоморфизм алгебр Ли. - Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
- Пример: пусть — открытое подмножество в и ; тогда — дифференцирование алгебры .