Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 5: Строка 5:
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
 
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>v^\mathtt T\!\cdot s\cdot w=\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>), <math>(f,g)\mapsto\!\int_X\!sfg</math>.
 
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>v^\mathtt T\!\cdot s\cdot w=\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>), <math>(f,g)\mapsto\!\int_X\!sfg</math>.
<li>Необходимость изучения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
+
<li>Мотивация рассмотрения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
<li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
+
<li>Матрица Грама формы <math>\sigma</math> (<math>e\in V^n</math>): <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
+
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math> (<math>e\in\mathrm{OB}(V)</math>). Преобразов.-я при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
+
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
 
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
 
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
 
<li><math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>, <math>\mathrm{Iso}((V,\sigma),(Y,\varphi))=\mathrm{Hom}((V,\sigma),(Y,\varphi))\cap\mathrm{Bij}(V,Y)</math>.
 
<li><math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>, <math>\mathrm{Iso}((V,\sigma),(Y,\varphi))=\mathrm{Hom}((V,\sigma),(Y,\varphi))\cap\mathrm{Bij}(V,Y)</math>.
<li>Группа автоморфизмов пр.-ва с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Iso}((V,\sigma),(V,\sigma))</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math> (<math>s\in\mathrm{Mat}(n,K)</math>).</ul>
+
<li>Группа автоморфизмов простр.-ва с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Iso}((V,\sigma),(V,\sigma))</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math> (<math>s\in\mathrm{Mat}(n,K)</math>).</ul>
  
<h5>3.1.2&nbsp; ¯-Квадратичные формы</h5>
+
<!--<h5>3.1.2&nbsp; ¯-Квадратичные формы</h5>
 
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>.
 
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>.
 
<li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 
<li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
Строка 107: Строка 107:
 
<li><u>Усиленная теорема Лагранжа для евклидова или унитарного пространства.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>\tau\in\overline\mathrm{SBi}(V)</math>;<br>тогда <math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>\tau_{e,e}</math> — диагональная матрица<math>\bigr)</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>).</i>
 
<li><u>Усиленная теорема Лагранжа для евклидова или унитарного пространства.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>\tau\in\overline\mathrm{SBi}(V)</math>;<br>тогда <math>\exists\,e\in\mathrm{OnOB}(V)\;</math><math>\bigl(</math><math>\tau_{e,e}</math> — диагональная матрица<math>\bigr)</math> (то есть <math>\mathrm{OnOB}(V)\cap\mathrm{OOB}(V,\tau)\ne\varnothing</math>).</i>
 
<li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\dim V=3</math>, <math>a\in\mathrm{SO}(V)\!\setminus\!\{\mathrm{id}_V\}</math>; обозначим через <math>U</math> пространство <math>V_1(a,1)</math><br>и обозначим через <math>b</math> оператор <math>a|_{U^\perp\to U^\perp}</math>; тогда <math>\dim U=1</math>, <math>b\in\mathrm{SO}(U^\perp)</math> и для любых <math>v\in V</math> выполнено <math>a(v)=\mathrm{proj}_U(v)+b\bigl(v-\mathrm{proj}_U(v)\bigr)</math><br>(то есть оператор <math>a</math> — вращение вокруг оси <math>U</math>).</i>
 
<li><u>Теорема Эйлера о вращениях.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\dim V=3</math>, <math>a\in\mathrm{SO}(V)\!\setminus\!\{\mathrm{id}_V\}</math>; обозначим через <math>U</math> пространство <math>V_1(a,1)</math><br>и обозначим через <math>b</math> оператор <math>a|_{U^\perp\to U^\perp}</math>; тогда <math>\dim U=1</math>, <math>b\in\mathrm{SO}(U^\perp)</math> и для любых <math>v\in V</math> выполнено <math>a(v)=\mathrm{proj}_U(v)+b\bigl(v-\mathrm{proj}_U(v)\bigr)</math><br>(то есть оператор <math>a</math> — вращение вокруг оси <math>U</math>).</i>
<li><u>Теорема о группах SU(2) и SO(3).</u><br><i>(1) <math>\mathrm{SU}(2)\cong\mathrm S^3</math>, <math>\mathrm{SO}(3)\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (пространство <math>\,\mathbb H_\mathrm{vect}</math> рассматривается со стандартным симметричным скалярным произведением).<br>(2) Для любых <math>g\in\mathrm S^3</math>, обозначая через <math>\mathrm{rot}_g</math> отображение <math>\biggl(\!\begin{align}\mathbb H_\mathrm{vect}\!&\to\mathbb H_\mathrm{vect}\\v&\mapsto g\,v\,g^{-1}\!\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{rot}_g\!\in\mathrm{SO}(\mathbb H_\mathrm{vect})</math>.<br>(3) Для любых <math>u\in\mathbb H_\mathrm{vect}\!\cap\mathrm S^3</math> и <math>\varphi\in[0;2\pi)</math>, обозначая через <math>g</math> кватернион <math>\cos\varphi+\sin\varphi\cdot u</math>, имеем следующие факты: <math>g\in\mathrm S^3</math>, <math>\mathrm{rot}_g(u)=u</math><br>и для любых <math>w\in\langle u\rangle^\perp</math> выполнено <math>\mathrm{rot}_g(w)=\cos(2\varphi)\,w+\sin(2\varphi)\,u\times w</math>.<br>(4) Обозначая через <math>\,\mathrm{rot}</math> отображение <math>\biggl(\!\begin{align}\mathrm S^3\!&\to\mathrm{SO}(\mathbb H_\mathrm{vect})\\g&\mapsto\mathrm{rot}_g\end{align}\!\biggr)</math>, имеем следующие факты: <math>\mathrm{rot}</math> — гомоморфизм групп, <math>\mathrm{Ker}\,\mathrm{rot}=\{1,-1\}</math> и<br><math>\mathrm{Im}\,\mathrm{rot}=\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (и, значит, <math>\mathrm S^3\!/\{1,-1\}\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> и <math>\,\mathrm{SU}(2)/\{\mathrm{id}_2,-\mathrm{id}_2\}\cong\mathrm{SO}(3)</math>).</i></ul>
+
<li><u>Теорема о группах SU(2) и SO(3).</u><br><i>(1) <math>\mathrm{SU}(2)\cong\mathrm S^3</math>, <math>\mathrm{SO}(3)\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (пространство <math>\,\mathbb H_\mathrm{vect}</math> рассматривается со стандартным симметричным скалярным произведением).<br>(2) Для любых <math>g\in\mathrm S^3</math>, обозначая через <math>\mathrm{rot}_g</math> отображение <math>\biggl(\!\begin{align}\mathbb H_\mathrm{vect}\!&\to\mathbb H_\mathrm{vect}\\v&\mapsto g\,v\,g^{-1}\!\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{rot}_g\!\in\mathrm{SO}(\mathbb H_\mathrm{vect})</math>.<br>(3) Для любых <math>u\in\mathbb H_\mathrm{vect}\!\cap\mathrm S^3</math> и <math>\varphi\in[0;2\pi)</math>, обозначая через <math>g</math> кватернион <math>\cos\varphi+\sin\varphi\cdot u</math>, имеем следующие факты: <math>g\in\mathrm S^3</math>, <math>\mathrm{rot}_g(u)=u</math><br>и для любых <math>w\in\langle u\rangle^\perp</math> выполнено <math>\mathrm{rot}_g(w)=\cos(2\varphi)\,w+\sin(2\varphi)\,u\times w</math>.<br>(4) Обозначая через <math>\,\mathrm{rot}</math> отображение <math>\biggl(\!\begin{align}\mathrm S^3\!&\to\mathrm{SO}(\mathbb H_\mathrm{vect})\\g&\mapsto\mathrm{rot}_g\end{align}\!\biggr)</math>, имеем следующие факты: <math>\mathrm{rot}</math> — гомоморфизм групп, <math>\mathrm{Ker}\,\mathrm{rot}=\{1,-1\}</math> и<br><math>\mathrm{Im}\,\mathrm{rot}=\mathrm{SO}(\mathbb H_\mathrm{vect})</math> (и, значит, <math>\mathrm S^3\!/\{1,-1\}\cong\mathrm{SO}(\mathbb H_\mathrm{vect})</math> и <math>\,\mathrm{SU}(2)/\{\mathrm{id}_2,-\mathrm{id}_2\}\cong\mathrm{SO}(3)</math>).</i></ul>-->

Версия 23:30, 25 июня 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм . Примеры билинейных форм: (), .
  • Мотивация рассмотрения ¯-билинейных форм. Поля с инволюцией. Пространство . Пространство ¯-билинейных форм: .
  • Матрица Грама формы (): . ¯-Билинейная форма в координатах: .
  • Изоморфизм (). Преобразов.-я при замене базиса: и .
  • Простр.-ва (над полем ) и .
  • Пр.-ва (над полем ) и .
  • , .
  • Группа автоморфизмов простр.-ва с формой: и ().