Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
__NOTOC__
 
__NOTOC__
<h2>1&nbsp; Линейная алгебра</h2>
+
<h2>2&nbsp; Линейная алгебра</h2>
 
<table cellpadding="6" cellspacing="0">
 
<table cellpadding="6" cellspacing="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-<br>научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-<br>щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического<br>анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-<br>нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство<br>приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.<br>Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности<br>малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы<br>является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной<br>алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной<br>двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-<br>лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.</td></tr><tr align="right"><td><i>А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия</i></td></tr></table></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-<br>научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-<br>щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического<br>анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-<br>нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство<br>приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.<br>Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности<br>малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы<br>является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной<br>алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной<br>двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-<br>лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.</td></tr><tr align="right"><td><i>А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия</i></td></tr></table></td></tr>
Строка 8: Строка 8:
  
 
<font size="3"><b>Содержание первой половины второго семестра курса алгебры</b></font>
 
<font size="3"><b>Содержание первой половины второго семестра курса алгебры</b></font>
<h5>1.1&nbsp; Матрицы, базисы, координаты</h5>
+
<h5>2.1&nbsp; Матрицы, базисы, координаты</h5>
<ul><li>1.1.1&nbsp; Пространства матриц, столбцов, строк
+
<ul><li>2.1.1&nbsp; Пространства матриц, столбцов, строк
<li>1.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов
+
<li>2.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов
<li>1.1.3&nbsp; Преобразования координат при замене базиса
+
<li>2.1.3&nbsp; Преобразования координат при замене базиса
<li>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</ul>
+
<li>2.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</ul>
<h5>1.2&nbsp; Линейные операторы (часть 1)</h5>
+
<h5>2.2&nbsp; Линейные операторы (часть 1)</h5>
<ul><li>1.2.1&nbsp; Ядро и образ линейного оператора
+
<ul><li>2.2.1&nbsp; Ядро и образ линейного оператора
<li>1.2.2&nbsp; Ранг линейного оператора
+
<li>2.2.2&nbsp; Ранг линейного оператора
<li>1.2.3&nbsp; Системы линейных уравнений</ul>
+
<li>2.2.3&nbsp; Системы линейных уравнений</ul>
<h5>1.3&nbsp; Конструкции над векторными пространствами</h5>
+
<h5>2.3&nbsp; Конструкции над векторными пространствами</h5>
<ul><li>1.3.1&nbsp; Факторпространства и прямая сумма векторных пространств
+
<ul><li>2.3.1&nbsp; Факторпространства и прямая сумма векторных пространств
<li>1.3.2&nbsp; Двойственное пространство</ul>
+
<li>2.3.2&nbsp; Двойственное пространство</ul>
<h5>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h5>
+
<h5>2.4&nbsp; Полилинейные отображения, формы объема, определитель</h5>
<ul><li>1.4.1&nbsp; Отступление о симметрических группах
+
<ul><li>2.4.1&nbsp; Отступление о симметрических группах
<li>1.4.2&nbsp; Полилинейные отображения и формы объема
+
<li>2.4.2&nbsp; Полилинейные отображения и формы объема
<li>1.4.3&nbsp; Определитель линейного оператора
+
<li>2.4.3&nbsp; Определитель линейного оператора
<li>1.4.4&nbsp; Миноры матрицы и присоединенная матрица</ul><br>
+
<li>2.4.4&nbsp; Миноры матрицы и присоединенная матрица</ul><br>
  
 
<font size="3"><b><u>Материал второй половины второго семестра курса алгебры</u></b></font>
 
<font size="3"><b><u>Материал второй половины второго семестра курса алгебры</u></b></font>
  
<h3>1.5&nbsp; Линейные операторы (часть 2)</h3>
+
<h3>2.5&nbsp; Линейные операторы (часть 2)</h3>
<h5>1.5.1&nbsp; Многочлены от операторов</h5>
+
<h5>2.5.1&nbsp; Многочлены от операторов</h5>
 
<ul><li>Многочлен от оператора: <math>f(a)=\sum_{k=0}^{\deg f}f_ka^k</math>. Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм колец и векторных пространств.
 
<ul><li>Многочлен от оператора: <math>f(a)=\sum_{k=0}^{\deg f}f_ka^k</math>. Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм колец и векторных пространств.
 
<li>Кольцо, порожденное оператором: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a</math> — коммутативное подкольцо и подпространство в <math>\mathrm{End}(V)</math>.
 
<li>Кольцо, порожденное оператором: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a</math> — коммутативное подкольцо и подпространство в <math>\mathrm{End}(V)</math>.
Строка 38: Строка 38:
 
<li>Проектор (идемпотент): <math>a^2=a\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a</math>. Нильпотентный оператор: <math>\exists\,m\in\mathbb N_0\;\bigl(a^m=0\bigr)\,\Leftrightarrow\,\exists\,m\in\mathbb N_0\;\bigl(\mu_a=x^m\bigr)</math>.</ul>
 
<li>Проектор (идемпотент): <math>a^2=a\,\Leftrightarrow\,V=\mathrm{Ker}\,(a-\mathrm{id}_V)\oplus\mathrm{Ker}\,a</math>. Нильпотентный оператор: <math>\exists\,m\in\mathbb N_0\;\bigl(a^m=0\bigr)\,\Leftrightarrow\,\exists\,m\in\mathbb N_0\;\bigl(\mu_a=x^m\bigr)</math>.</ul>
  
<h5>1.5.2&nbsp; Спектр оператора и характеристический многочлен оператора</h5>
+
<h5>2.5.2&nbsp; Спектр оператора и характеристический многочлен оператора</h5>
 
<ul><li>Спектр оператора: <math>\mathrm{Spec}(a)=\{c\in K\mid(a-c\cdot\mathrm{id}_V)\notin\mathrm{GL}(V)\}</math>; если <math>\dim V<\infty</math>, то <math>\mathrm{Spec}(a)=\{c\in K\mid\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)\ne\{0\}\}</math>.
 
<ul><li>Спектр оператора: <math>\mathrm{Spec}(a)=\{c\in K\mid(a-c\cdot\mathrm{id}_V)\notin\mathrm{GL}(V)\}</math>; если <math>\dim V<\infty</math>, то <math>\mathrm{Spec}(a)=\{c\in K\mid\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)\ne\{0\}\}</math>.
 
<li>Характеристический многочлен матрицы: <math>\chi_a=\det(x\cdot\mathrm{id}_n-a)</math>. Характеристический многочлен оператора: <math>\chi_a=\chi_{a_e^e}</math>. Корректность определения.
 
<li>Характеристический многочлен матрицы: <math>\chi_a=\det(x\cdot\mathrm{id}_n-a)</math>. Характеристический многочлен оператора: <math>\chi_a=\chi_{a_e^e}</math>. Корректность определения.
Строка 46: Строка 46:
 
<li><u>Лемма о минимальном и характеристическом многочленах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) многочлен <math>\mu_a</math> делит многочлен <math>\chi_a</math> (и, значит, <math>\forall\,c\in K\;\bigl(\beta(a,c)\le\alpha(a,c)\bigr)</math>);<br>(2) <math>\mathrm{Spec}(a)=\{c\in K\mid\mu_a(c)=0\}</math>;<br>(3) если <math>a</math> — нильпотентный оператор, то <math>\chi_a=x^{\dim V}</math>.</i></ul>
 
<li><u>Лемма о минимальном и характеристическом многочленах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) многочлен <math>\mu_a</math> делит многочлен <math>\chi_a</math> (и, значит, <math>\forall\,c\in K\;\bigl(\beta(a,c)\le\alpha(a,c)\bigr)</math>);<br>(2) <math>\mathrm{Spec}(a)=\{c\in K\mid\mu_a(c)=0\}</math>;<br>(3) если <math>a</math> — нильпотентный оператор, то <math>\chi_a=x^{\dim V}</math>.</i></ul>
  
<h5>1.5.3&nbsp; Собственные и корневые подпространства оператора</h5>
+
<h5>2.5.3&nbsp; Собственные и корневые подпространства оператора</h5>
 
<ul><li>Обобщенные собственные подпространства: <math>V_j(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)^j\le V</math>. Корневые подпространства: <math>V(a,c)=\bigcup_{j=0}^\infty V_j(a,c)\le V</math>.
 
<ul><li>Обобщенные собственные подпространства: <math>V_j(a,c)=\mathrm{Ker}\,(a-c\cdot\mathrm{id}_V)^j\le V</math>. Корневые подпространства: <math>V(a,c)=\bigcup_{j=0}^\infty V_j(a,c)\le V</math>.
 
<li>Цепь <math>a</math>-инвариантных подпространств: <math>\{0\}<V_1(a,c)<\ldots<V_{p-1}(a,c)<V_p(a,c)=V_{p+1}(a,c)=\ldots</math>; вывод: <math>V(a,c)=V_p(a,c)</math>.
 
<li>Цепь <math>a</math>-инвариантных подпространств: <math>\{0\}<V_1(a,c)<\ldots<V_{p-1}(a,c)<V_p(a,c)=V_{p+1}(a,c)=\ldots</math>; вывод: <math>V(a,c)=V_p(a,c)</math>.
Строка 54: Строка 54:
 
<li><u>Теорема о разложении в прямую сумму корневых подпространств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то<br>это условие выполнено для любого оператора <math>a</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда<br>(1) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V(a,c)</math> (это разложение пространства <math>V</math> в прямую сумму корневых подпространств оператора <math>a</math>);<br>(2) для любых <math>c\in\mathrm{Spec}(a)</math>, обозначая через <math>\mathrm{nil}(a,c)</math> оператор <math>(a-c\cdot\mathrm{id}_V)|_{V(a,c)\to V(a,c)}</math>, имеем следующий факт: для любых <math>j\in\mathbb N_0</math><br>выполнено <math>\,\mathrm{Ker}\,\mathrm{nil}(a,c)^j=V_j(a,c)</math>, а также <math>\mathrm{nil}(a,c)</math> — нильпотентный оператор и <math>\dim V(a,c)=\alpha(a,c)</math>.</i></ul>
 
<li><u>Теорема о разложении в прямую сумму корневых подпространств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то<br>это условие выполнено для любого оператора <math>a</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда<br>(1) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V(a,c)</math> (это разложение пространства <math>V</math> в прямую сумму корневых подпространств оператора <math>a</math>);<br>(2) для любых <math>c\in\mathrm{Spec}(a)</math>, обозначая через <math>\mathrm{nil}(a,c)</math> оператор <math>(a-c\cdot\mathrm{id}_V)|_{V(a,c)\to V(a,c)}</math>, имеем следующий факт: для любых <math>j\in\mathbb N_0</math><br>выполнено <math>\,\mathrm{Ker}\,\mathrm{nil}(a,c)^j=V_j(a,c)</math>, а также <math>\mathrm{nil}(a,c)</math> — нильпотентный оператор и <math>\dim V(a,c)=\alpha(a,c)</math>.</i></ul>
  
<h3>1.6&nbsp; Линейные операторы (часть 3)</h3>
+
<h3>2.6&nbsp; Линейные операторы (часть 3)</h3>
<h5>1.6.1&nbsp; Относительные базисы</h5>
+
<h5>2.6.1&nbsp; Относительные базисы</h5>
 
<ul><li>Независимое подмножество в <math>V</math> относительно <math>U</math>: <math>\sum_{c\in C}f(c)\,c\in U\,\Rightarrow\,f=0</math>. Порождающее подмножество в <math>V</math> относительно <math>U</math>: <math>U+\langle D\rangle=V</math>.
 
<ul><li>Независимое подмножество в <math>V</math> относительно <math>U</math>: <math>\sum_{c\in C}f(c)\,c\in U\,\Rightarrow\,f=0</math>. Порождающее подмножество в <math>V</math> относительно <math>U</math>: <math>U+\langle D\rangle=V</math>.
 
<li>Базис в <math>V</math> относительно <math>U</math>: одновременно независимое и порождающее подмножество в <math>V</math> относительно <math>U</math>. Три леммы-упражнения.
 
<li>Базис в <math>V</math> относительно <math>U</math>: одновременно независимое и порождающее подмножество в <math>V</math> относительно <math>U</math>. Три леммы-упражнения.
Строка 64: Строка 64:
 
<li><u>Следствие из теоремы об относительно независимых подмножествах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>j\in\mathbb N</math>; тогда <math>\dim\mathrm{Ker}\,a^j-\dim\mathrm{Ker}\,a^{j-1}\ge\dim\mathrm{Ker}\,a^{j+1}-\dim\mathrm{Ker}\,a^j</math>.</i></ul>
 
<li><u>Следствие из теоремы об относительно независимых подмножествах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>j\in\mathbb N</math>; тогда <math>\dim\mathrm{Ker}\,a^j-\dim\mathrm{Ker}\,a^{j-1}\ge\dim\mathrm{Ker}\,a^{j+1}-\dim\mathrm{Ker}\,a^j</math>.</i></ul>
  
<h5>1.6.2&nbsp; Жорданова нормальная форма оператора</h5>
+
<h5>2.6.2&nbsp; Жорданова нормальная форма оператора</h5>
 
<ul><li>Жордановы клетки: <math>\mathrm{jc}_n(0)=\mathrm{se}_1^2+\mathrm{se}_2^3+\ldots+\mathrm{se}_{n-1}^n</math> и <math>\mathrm{jc}_n(c)=c\cdot\mathrm{id}_n+\mathrm{jc}_n(0)</math>. Прямая сумма матриц: <math>a\oplus b\oplus\ldots=\!\Biggl(\begin{smallmatrix}a&0&0\\0&b&0\\0&0&\ddots\end{smallmatrix}\Biggr)</math>.
 
<ul><li>Жордановы клетки: <math>\mathrm{jc}_n(0)=\mathrm{se}_1^2+\mathrm{se}_2^3+\ldots+\mathrm{se}_{n-1}^n</math> и <math>\mathrm{jc}_n(c)=c\cdot\mathrm{id}_n+\mathrm{jc}_n(0)</math>. Прямая сумма матриц: <math>a\oplus b\oplus\ldots=\!\Biggl(\begin{smallmatrix}a&0&0\\0&b&0\\0&0&\ddots\end{smallmatrix}\Biggr)</math>.
 
<li>Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)=\mathrm{jc}_{n_1}\!(c)\oplus\ldots\oplus\mathrm{jc}_{n_r}\!(c)</math>, где числа <math>n_1,\ldots,n_r</math> суть длины строк диаграммы Юнга <math>\Delta</math>.
 
<li>Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)=\mathrm{jc}_{n_1}\!(c)\oplus\ldots\oplus\mathrm{jc}_{n_r}\!(c)</math>, где числа <math>n_1,\ldots,n_r</math> суть длины строк диаграммы Юнга <math>\Delta</math>.
Строка 71: Строка 71:
 
<li><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math><br>и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для<br>любого оператора <math>a</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что<br><math>a_e^e=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!\mathrm{jb}_{\Delta(a,c)}(c)</math> (то есть матрица <math>a_e^e</math> раскладывается в прямую сумму жордановых блоков).</i></ul>
 
<li><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math><br>и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для<br>любого оператора <math>a</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что<br><math>a_e^e=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!\mathrm{jb}_{\Delta(a,c)}(c)</math> (то есть матрица <math>a_e^e</math> раскладывается в прямую сумму жордановых блоков).</i></ul>
  
<h5>1.6.3&nbsp; Примеры использования жордановой нормальной формы в анализе и физике</h5>
+
<h5>2.6.3&nbsp; Примеры использования жордановой нормальной формы в анализе и физике</h5>
 
<ul><li>Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^{\mathrm{se}}\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_{\mathrm{se}}^e</math></i>. Вычисление многочленов и рядов от жордановых клеток.
 
<ul><li>Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^{\mathrm{se}}\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_{\mathrm{se}}^e</math></i>. Вычисление многочленов и рядов от жордановых клеток.
 
<li>Экспонента от оператора: <math>\mathrm e^a=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Пример вычисления экспоненты: <math>\mathrm e^{\Bigl(\begin{smallmatrix}0&-\varphi\\\varphi&0\end{smallmatrix}\Bigr)}\!=\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>. Теорема о свойствах экспоненты.
 
<li>Экспонента от оператора: <math>\mathrm e^a=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Пример вычисления экспоненты: <math>\mathrm e^{\Bigl(\begin{smallmatrix}0&-\varphi\\\varphi&0\end{smallmatrix}\Bigr)}\!=\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>. Теорема о свойствах экспоненты.
Строка 80: Строка 80:
 
<li>Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: <math>|\psi_n(x)|^2=\frac2l\sin^2\!\Bigl(\frac{\pi n}lx\Bigr)</math> — плотность вероятности, <math>E_n=\frac{\hbar^2\pi^2}{2ml^2}n^2</math> — энергия.</ul>
 
<li>Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: <math>|\psi_n(x)|^2=\frac2l\sin^2\!\Bigl(\frac{\pi n}lx\Bigr)</math> — плотность вероятности, <math>E_n=\frac{\hbar^2\pi^2}{2ml^2}n^2</math> — энергия.</ul>
  
<h3>1.7&nbsp; Алгебры</h3>
+
<h3>2.7&nbsp; Алгебры</h3>
<h5>1.7.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
+
<h5>2.7.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<ul><li><math>K</math>-Алгебра — векторное пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из <math>K</math>.
 
<ul><li><math>K</math>-Алгебра — векторное пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из <math>K</math>.
 
<li>Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
 
<li>Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
Строка 89: Строка 89:
 
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul>
 
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul>
  
<h5>1.7.2&nbsp; Полилинейные формы и многочлены от свободных переменных</h5>
+
<h5>2.7.2&nbsp; Полилинейные формы и многочлены от свободных переменных</h5>
 
<ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\,\omega'(v_1',\ldots,v_{k'}')</math>. Свойства операции <math>\otimes</math>.
 
<ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\,\omega'(v_1',\ldots,v_{k'}')</math>. Свойства операции <math>\otimes</math>.
 
<li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e^{j_1}\!\otimes\ldots\otimes e^{j_k}\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}_kV</math></i>.
 
<li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e^{j_1}\!\otimes\ldots\otimes e^{j_k}\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}_kV</math></i>.
Строка 97: Строка 97:
 
<li><u>Теорема об алгебре полилинейных форм.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>;<br>тогда отображение, продолжающее по линейности частичное отображение <math>\biggl(\!\begin{align}K_\otimes[x_1,\ldots,x_n]&\to\mathrm{Multi}(V)\\x_{j_1}\!\otimes\ldots\otimes x_{j_k}&\mapsto e^{j_1}\!\otimes\ldots\otimes e^{j_k}\!\end{align}\!\biggr)</math>, — изоморфизм алгебр с <math>1</math>.</i></ul>
 
<li><u>Теорема об алгебре полилинейных форм.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>;<br>тогда отображение, продолжающее по линейности частичное отображение <math>\biggl(\!\begin{align}K_\otimes[x_1,\ldots,x_n]&\to\mathrm{Multi}(V)\\x_{j_1}\!\otimes\ldots\otimes x_{j_k}&\mapsto e^{j_1}\!\otimes\ldots\otimes e^{j_k}\!\end{align}\!\biggr)</math>, — изоморфизм алгебр с <math>1</math>.</i></ul>
  
<h5>1.7.3&nbsp; Тело кватернионов</h5>
+
<h5>2.7.3&nbsp; Тело кватернионов</h5>
 
<ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>.
 
<ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>.
 
<li>Скалярная (вещественная) и векторная (мнимая) части кватерниона: <math>\mathrm{re}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\alpha</math> и <math>\mathrm{im}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k</math>.
 
<li>Скалярная (вещественная) и векторная (мнимая) части кватерниона: <math>\mathrm{re}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\alpha</math> и <math>\mathrm{im}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k</math>.
Строка 105: Строка 105:
 
<li><u>Теорема о представлении кватернионов комплексными матрицами.</u> <i>Отображение <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — инъективный<br>гомоморфизм алгебр с <math>1</math>, и его образ есть <math>\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\!\mid c,d\in\mathbb C\bigr\}</math> (и, значит, <math>\mathbb H\cong\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\!\mid c,d\in\mathbb C\bigr\}</math>).</i></ul>
 
<li><u>Теорема о представлении кватернионов комплексными матрицами.</u> <i>Отображение <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — инъективный<br>гомоморфизм алгебр с <math>1</math>, и его образ есть <math>\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\!\mid c,d\in\mathbb C\bigr\}</math> (и, значит, <math>\mathbb H\cong\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\!\mid c,d\in\mathbb C\bigr\}</math>).</i></ul>
  
<h5>1.7.4&nbsp; Алгебры Ли (основные определения и примеры)</h5>
+
<h5>2.7.4&nbsp; Алгебры Ли (основные определения и примеры)</h5>
 
<ul><li>Условия на умножение в алгебре Ли: билинейность, антисимметричность (<math>[a,a]=0</math>), тождество Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>).
 
<ul><li>Условия на умножение в алгебре Ли: билинейность, антисимметричность (<math>[a,a]=0</math>), тождество Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>).
 
<li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: пространство <math>{}_K\!A</math> с операцией <math>[\,,\,]</math>. Утверждение: <i><math>A^-</math> — алгебра Ли</i>.
 
<li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: пространство <math>{}_K\!A</math> с операцией <math>[\,,\,]</math>. Утверждение: <i><math>A^-</math> — алгебра Ли</i>.
Строка 114: Строка 114:
  
 
<font size="3"><b>Вопросы к экзамену по второй половине второго семестра курса алгебры</b></font>
 
<font size="3"><b>Вопросы к экзамену по второй половине второго семестра курса алгебры</b></font>
<ol><li>Строки 1, 2, 3, 4 пункта 1.5.1 «Многочлены от операторов».
+
<ol><li>Строки 1, 2, 3, 4 пункта 2.5.1 «Многочлены от операторов».
<li>Строки 5, 6, 7 пункта 1.5.1 «Многочлены от операторов».
+
<li>Строки 5, 6, 7 пункта 2.5.1 «Многочлены от операторов».
<li>Строки 1, 2, 3 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
+
<li>Строки 1, 2, 3 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
<li>Строки 1, 2, 4 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
+
<li>Строки 1, 2, 4 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
<li>Строки 2, 5, 6 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
+
<li>Строки 2, 5, 6 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
<li>Строки 1, 2, 3 пункта 1.5.3 «Собственные и корневые подпространства оператора».
+
<li>Строки 1, 2, 3 пункта 2.5.3 «Собственные и корневые подпространства оператора».
<li>Строки 1, 4 пункта 1.5.3 «Собственные и корневые подпространства оператора».
+
<li>Строки 1, 4 пункта 2.5.3 «Собственные и корневые подпространства оператора».
<li>Строки 1, 5 пункта 1.5.3 «Собственные и корневые подпространства оператора».
+
<li>Строки 1, 5 пункта 2.5.3 «Собственные и корневые подпространства оператора».
<li>Строки 1, 6 пункта 1.5.3 «Собственные и корневые подпространства оператора».
+
<li>Строки 1, 6 пункта 2.5.3 «Собственные и корневые подпространства оператора».
<li>Строки 1, 2 пункта 1.6.1 «Относительные базисы».
+
<li>Строки 1, 2 пункта 2.6.1 «Относительные базисы».
<li>Строки 3, 4 пункта 1.6.1 «Относительные базисы».
+
<li>Строки 3, 4 пункта 2.6.1 «Относительные базисы».
<li>Строки 1, 2, 3, 4 пункта 1.6.2 «Жорданова нормальная форма оператора».
+
<li>Строки 1, 2, 3, 4 пункта 2.6.2 «Жорданова нормальная форма оператора».
<li>Строки 1, 2, 3, 5 пункта 1.6.2 «Жорданова нормальная форма оператора».
+
<li>Строки 1, 2, 3, 5 пункта 2.6.2 «Жорданова нормальная форма оператора».
<li>Строки 1, 2 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
+
<li>Строки 1, 2 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
<li>Строки 3, 4 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
+
<li>Строки 3, 4 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
<li>Строки 5, 6 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
+
<li>Строки 5, 6 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
<li>Строки 1, 2, 3, 4 пункта 1.7.1 «Определения и конструкции, связанные с алгебрами».
+
<li>Строки 1, 2, 3, 4 пункта 2.7.1 «Определения и конструкции, связанные с алгебрами».
<li>Строки 2, 5, 6 пункта 1.7.1 «Определения и конструкции, связанные с алгебрами».
+
<li>Строки 2, 5, 6 пункта 2.7.1 «Определения и конструкции, связанные с алгебрами».
<li>Строки 1, 2, 3 пункта 1.7.2 «Полилинейные формы и многочлены от свободных переменных».
+
<li>Строки 1, 2, 3 пункта 2.7.2 «Полилинейные формы и многочлены от свободных переменных».
<li>Строки 4, 5, 6 пункта 1.7.2 «Полилинейные формы и многочлены от свободных переменных».
+
<li>Строки 4, 5, 6 пункта 2.7.2 «Полилинейные формы и многочлены от свободных переменных».
<li>Строки 1, 2, 3, 4 пункта 1.7.3 «Тело кватернионов».
+
<li>Строки 1, 2, 3, 4 пункта 2.7.3 «Тело кватернионов».
<li>Строки 5, 6 пункта 1.7.3 «Тело кватернионов».
+
<li>Строки 5, 6 пункта 2.7.3 «Тело кватернионов».
<li>Строки 1, 2, 3 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».
+
<li>Строки 1, 2, 3 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».
<li>Строки 1, 4 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».
+
<li>Строки 1, 4 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».
<li>Строки 5, 6 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».</ol><br>
+
<li>Строки 5, 6 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».</ol><br>
  
 
<font size="3"><b>Правила проведения экзамена</b></font>
 
<font size="3"><b>Правила проведения экзамена</b></font>
 
<ul><li>На экзамене можно использовать только написанные выше план материала курса и список вопросов (желательно иметь распечатки).
 
<ul><li>На экзамене можно использовать только написанные выше план материала курса и список вопросов (желательно иметь распечатки).
<li>«Строки» в списке вопросов нужно понимать либо как «настоящие строки» в плане материала курса (например, строки 1, 2, 3, 4 пункта 1.5.1),<br>либо в естественном обобщенном смысле (например, строки 5, 6, 7 пункта 1.5.1 суть «настоящие строки» 5, 6, 7, 8, 9).
+
<li>«Строки» в списке вопросов нужно понимать либо как «настоящие строки» в плане материала курса (например, строки 1, 2, 3, 4 пункта 2.5.1),<br>либо в естественном обобщенном смысле (например, строки 5, 6, 7 пункта 2.5.1 суть «настоящие строки» 5, 6, 7, 8, 9).
 
<li>При ответе на вопрос должен быть подробно рассказан материал строк, указанных в вопросе (например, если строка содержит определения,<br>то к ним должны быть приведены примеры; если строка содержит утверждения или теоремы, то они должны быть полностью доказаны).
 
<li>При ответе на вопрос должен быть подробно рассказан материал строк, указанных в вопросе (например, если строка содержит определения,<br>то к ним должны быть приведены примеры; если строка содержит утверждения или теоремы, то они должны быть полностью доказаны).
 
<li>На экзамене нужно ответить на два вопроса: один с номером от 1 до 16 (то есть по пунктам о линейных операторах), один с номером от 17 до 25<br>(то есть по пунктам об алгебрах). Кроме того, будут заданы дополнительные вопросы и упражнения на знание определений и формулировок по<br>всем пунктам второй половины второго семестра, а также студентам, претендующим на оценку «отлично», будет дана задача.
 
<li>На экзамене нужно ответить на два вопроса: один с номером от 1 до 16 (то есть по пунктам о линейных операторах), один с номером от 17 до 25<br>(то есть по пунктам об алгебрах). Кроме того, будут заданы дополнительные вопросы и упражнения на знание определений и формулировок по<br>всем пунктам второй половины второго семестра, а также студентам, претендующим на оценку «отлично», будет дана задача.
 
<li>При подготовке к экзамену рекомендуется обратить внимание на глубокое понимание материала, а не на заучивание (возможность использовать<br>на экзамене план материала курса предоставляется для того, чтобы минимизировать заучивание).</ul><br>
 
<li>При подготовке к экзамену рекомендуется обратить внимание на глубокое понимание материала, а не на заучивание (возможность использовать<br>на экзамене план материала курса предоставляется для того, чтобы минимизировать заучивание).</ul><br>
  
<h2>2&nbsp; Билинейная и полилинейная алгебра</h2>
+
<h2>3&nbsp; Билинейная и полилинейная алгебра</h2>
 
+
<h3>2.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
+
<h5>2.1.1&nbsp; ¯-Билинейные формы</h5>
+
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>v^\mathtt T\!\cdot s\cdot w=\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>), <math>(f,g)\mapsto\!\int_X\!sfg</math>.
+
<li>Необходимость изучения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
+
<li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
+
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
+
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
+
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
+
<li>Мн.-во гомоморфизмов между пространствами с формой: <math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>.
+
<li>Группа автоморфизмов пространства с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Hom}((V,\sigma),(V,\sigma))\cap\mathrm{GL}(V)</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math>.</ul>
+
 
+
<h5>2.1.2&nbsp; ¯-Квадратичные формы</h5>
+
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>.
+
<li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
+
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: мн.-во вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
+
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v-w)\bigr)/4\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math>, <math>\sigma\in\mathrm{SBi}(V)</math> или <math>K=\mathbb C</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
+
 
+
<h5>2.1.3&nbsp; Невырожденные ¯-билинейные формы</h5>
+
<ul><li>Опускание индексов: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индексов в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>.
+
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\downarrow_\sigma</math> — биекция<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
+
<li>Тонкости случая <math>\dim V=\infty</math>. Пример: пусть <math>V=\mathrm C^0\!([-1;1],\mathbb R)</math> и <math>\sigma\colon(f,g)\mapsto\!\int_{-1}^1\!fg</math>; тогда <math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>, но <math>\mathrm{Im}\,{\downarrow}_\sigma\!<V^*\!\cap\mathrm C^0\!(V,\mathbb R)</math>.
+
<li>Подъем индексов (<math>\sigma</math> невырождена): <math>\uparrow^\sigma={\downarrow}_\sigma^{-1}</math>. Подъем индексов в координатах (<math>\sigma^{e,e}=(\sigma_{e,e})^{-1}</math>): <math>({\uparrow}^\sigma\lambda)^e=(\sigma^{e,e})^\mathtt T\!\cdot(\lambda_e)^\mathtt T</math> и <math>({\uparrow}^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{j,i}\,\lambda_j</math>.
+
<li><u>Лемма о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>e\in V^m</math>; обозначим<br>через <math>U</math> пространство <math>\langle e_1,\ldots,e_m\rangle</math>; тогда <math>\det\sigma_{e,e}\!\ne0</math>, если и только если <math>e\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
+
<li>Ортогональность (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополнение: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
+
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\le U^{\perp\perp}</math>, <math>U\le W\,\Rightarrow\,W^\perp\!\le U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\le(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}({\downarrow}_{\sigma|_{U\times U}})=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
+
 
+
<h5>2.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
+
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1}\!,e_{j_2})=0\bigr)</math>.
+
<li>Ортонормированный базис (если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>.
+
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>; тогда<br>существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
+
<li><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i>
+
<li><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i>
+
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>v\in V</math>; тогда <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}e_j</math></i>.
+
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и<br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно<br>тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul>
+
  
 
<table cellpadding="6" cellspacing="0">
 
<table cellpadding="6" cellspacing="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table>
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table>

Версия 12:20, 10 сентября 2016

2  Линейная алгебра

Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-
научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-
щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического
анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-
нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство
приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.
Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности
малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы
является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной
алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной
двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-
лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.
А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия
Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,
особенно в двадцатом веке, когда произошло «размежевание» математики и физики.
Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и
до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести
квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли
правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться
игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)
также описываются на языке линейной алгебры, только бесконечномерной.
То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за
листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-
разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-
щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго
пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-
венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-
век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)
По мотивам комментария в Живом Журнале (avva.livejournal.com/2932837.html)

Материал первой половины второго семестра курса алгебры

Содержание первой половины второго семестра курса алгебры

2.1  Матрицы, базисы, координаты
  • 2.1.1  Пространства матриц, столбцов, строк
  • 2.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • 2.1.3  Преобразования координат при замене базиса
  • 2.1.4  Элементарные матрицы и приведение к ступенчатому виду
2.2  Линейные операторы (часть 1)
  • 2.2.1  Ядро и образ линейного оператора
  • 2.2.2  Ранг линейного оператора
  • 2.2.3  Системы линейных уравнений
2.3  Конструкции над векторными пространствами
  • 2.3.1  Факторпространства и прямая сумма векторных пространств
  • 2.3.2  Двойственное пространство
2.4  Полилинейные отображения, формы объема, определитель
  • 2.4.1  Отступление о симметрических группах
  • 2.4.2  Полилинейные отображения и формы объема
  • 2.4.3  Определитель линейного оператора
  • 2.4.4  Миноры матрицы и присоединенная матрица

Материал второй половины второго семестра курса алгебры

2.5  Линейные операторы (часть 2)

2.5.1  Многочлены от операторов
  • Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
  • Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
  • Минимальный многочлен оператора: , приведен, ; .
  • Утверждение: пусть и ; тогда и, если и делит , то .
  • Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    и ; тогда .
  • Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    , и , где , и попарно взаимно просты; тогда .
  • Проектор (идемпотент): . Нильпотентный оператор: .
2.5.2  Спектр оператора и характеристический многочлен оператора
  • Спектр оператора: ; если , то .
  • Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
  • Утверждение: . Утверждение: (и, значит, ).
  • Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
  • Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
  • Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) многочлен делит многочлен (и, значит, );
    (2) ;
    (3) если — нильпотентный оператор, то .
2.5.3  Собственные и корневые подпространства оператора
  • Обобщенные собственные подпространства: . Корневые подпространства: .
  • Цепь -инвариантных подпространств: ; вывод: .
  • Относительные геометрические кратности: и . Утверждение: .
  • Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
    тогда следующие условия эквивалентны:
    (1) существует такой упорядоченный базис , что — диагональная матрица;
    (2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
    (3) (это разложение пространства в прямую сумму собственных подпространств оператора );
    (3') .
  • Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
    (1) для любых выполнено ;
    (2) и .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
    , и многочлен раскладывается в произведение многочленов степени в кольце (если , то
    это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
    (1) (это разложение пространства в прямую сумму корневых подпространств оператора );
    (2) для любых , обозначая через оператор , имеем следующий факт: для любых
    выполнено , а также — нильпотентный оператор и .

2.6  Линейные операторы (часть 3)

2.6.1  Относительные базисы
  • Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
  • Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.

    Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
    (1) — базис в относительно ;
    (1') — независимое подмножество в и ;
    (2) — максимальное независимое подмножество в относительно ;
    (3) — минимальное порождающее подмножество в относительно .

    Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .

    Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
    относительно ; тогда — базис в относительно .

  • Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
    обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
    относительно ; тогда — биекция и — независимое подмножество в относительно .
  • Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
    , и ; тогда .
2.6.2  Жорданова нормальная форма оператора
  • Жордановы клетки: и . Прямая сумма матриц: .
  • Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
  • Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
    , — нильпотентный оператор; тогда существует такой упорядоченный базис , что .
  • Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
    любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
    (то есть матрица раскладывается в прямую сумму жордановых блоков).
2.6.3  Примеры использования жордановой нормальной формы в анализе и физике
  • Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
  • Экспонента от оператора: . Пример вычисления экспоненты: . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты. Пусть — векторное пространство над полем и ; тогда
    (1) для любых таких , что , выполнено ;
    (2) для любых выполнено , а также .

  • Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
  • Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
  • Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
  • Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.

2.7  Алгебры

2.7.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
  • Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
  • Примеры алгебр: -алгебры , , , , , ; -алгебры , с векторным умножением, .
  • Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
  • Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над
    полем , получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
    пространстве (то есть элемент -алгебры );
    (2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с .
  • Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
2.7.2  Полилинейные формы и многочлены от свободных переменных
  • Тензорное произведение полилинейных форм: . Свойства операции .
  • Утверждение: пусть и ; тогда множество — базис пространства .
  • Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
  • Моном (слово) от свободных переменных степени : (). Моноид слов .
  • Пространство однородных многочленов степени : . Алгебра многочленов: .
  • Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
    тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
2.7.3  Тело кватернионов
  • -Алгебра кватернионов: , где и , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Сопряжение: . Модуль: . Чистые кватернионы: .
  • Теорема о свойствах кватернионов.
    (1) Для любых и выполнено .
    (2) Для любых выполнено и, если , то (и, значит, — тело).
    (3) Для любых выполнено (и, значит, отображение — антиавтоморфизм алгебры ).
    (4) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Трехмерная сфера: . Утверждение: пусть ; тогда и .
  • Теорема о представлении кватернионов комплексными матрицами. Отображение — инъективный
    гомоморфизм алгебр с , и его образ есть (и, значит, ).
2.7.4  Алгебры Ли (основные определения и примеры)
  • Условия на умножение в алгебре Ли: билинейность, антисимметричность (), тождество Якоби ().
  • Коммутатор в ассоциативной алгебре : . Алгебра : пространство с операцией . Утверждение: — алгебра Ли.
  • Примеры алгебр Ли: , , с векторным умножением ( в алгебре Ли ).
  • Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
    пространстве (то есть элемент алгебры Ли );
    (2) обозначая через отображение , имеем следующий факт: — гомоморфизм алгебр Ли.
  • Алгебра дифференцирований алгебры : — подалгебра алгебры Ли .
  • Теорема об алгебре Ли векторных полей. Пусть и — открытое подмножество в ; обозначим через и
    алгебру и векторное пространство соответственно; тогда
    (1) для любых , обозначая через отображение (здесь ), имеем следующий
    факт: — дифференцирование алгебры (то есть элемент алгебры Ли );
    (2) обозначая через отображение , имеем следующий факт: — инъективный линейный оператор,
    а также — подалгебра алгебры Ли ;
    (3) определим на векторном пространстве бинарную операцию так, что для любых выполнено
    (из пункта (2) следует, что это условие корректно определяет операцию ); тогда для любых
    выполнено (здесь ), а также — алгебра Ли относительно операции .

Вопросы к экзамену по второй половине второго семестра курса алгебры

  1. Строки 1, 2, 3, 4 пункта 2.5.1 «Многочлены от операторов».
  2. Строки 5, 6, 7 пункта 2.5.1 «Многочлены от операторов».
  3. Строки 1, 2, 3 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
  4. Строки 1, 2, 4 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
  5. Строки 2, 5, 6 пункта 2.5.2 «Спектр оператора и характеристический многочлен оператора».
  6. Строки 1, 2, 3 пункта 2.5.3 «Собственные и корневые подпространства оператора».
  7. Строки 1, 4 пункта 2.5.3 «Собственные и корневые подпространства оператора».
  8. Строки 1, 5 пункта 2.5.3 «Собственные и корневые подпространства оператора».
  9. Строки 1, 6 пункта 2.5.3 «Собственные и корневые подпространства оператора».
  10. Строки 1, 2 пункта 2.6.1 «Относительные базисы».
  11. Строки 3, 4 пункта 2.6.1 «Относительные базисы».
  12. Строки 1, 2, 3, 4 пункта 2.6.2 «Жорданова нормальная форма оператора».
  13. Строки 1, 2, 3, 5 пункта 2.6.2 «Жорданова нормальная форма оператора».
  14. Строки 1, 2 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
  15. Строки 3, 4 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
  16. Строки 5, 6 пункта 2.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
  17. Строки 1, 2, 3, 4 пункта 2.7.1 «Определения и конструкции, связанные с алгебрами».
  18. Строки 2, 5, 6 пункта 2.7.1 «Определения и конструкции, связанные с алгебрами».
  19. Строки 1, 2, 3 пункта 2.7.2 «Полилинейные формы и многочлены от свободных переменных».
  20. Строки 4, 5, 6 пункта 2.7.2 «Полилинейные формы и многочлены от свободных переменных».
  21. Строки 1, 2, 3, 4 пункта 2.7.3 «Тело кватернионов».
  22. Строки 5, 6 пункта 2.7.3 «Тело кватернионов».
  23. Строки 1, 2, 3 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».
  24. Строки 1, 4 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».
  25. Строки 5, 6 пункта 2.7.4 «Алгебры Ли (основные определения и примеры)».

Правила проведения экзамена

  • На экзамене можно использовать только написанные выше план материала курса и список вопросов (желательно иметь распечатки).
  • «Строки» в списке вопросов нужно понимать либо как «настоящие строки» в плане материала курса (например, строки 1, 2, 3, 4 пункта 2.5.1),
    либо в естественном обобщенном смысле (например, строки 5, 6, 7 пункта 2.5.1 суть «настоящие строки» 5, 6, 7, 8, 9).
  • При ответе на вопрос должен быть подробно рассказан материал строк, указанных в вопросе (например, если строка содержит определения,
    то к ним должны быть приведены примеры; если строка содержит утверждения или теоремы, то они должны быть полностью доказаны).
  • На экзамене нужно ответить на два вопроса: один с номером от 1 до 16 (то есть по пунктам о линейных операторах), один с номером от 17 до 25
    (то есть по пунктам об алгебрах). Кроме того, будут заданы дополнительные вопросы и упражнения на знание определений и формулировок по
    всем пунктам второй половины второго семестра, а также студентам, претендующим на оценку «отлично», будет дана задача.
  • При подготовке к экзамену рекомендуется обратить внимание на глубокое понимание материала, а не на заучивание (возможность использовать
    на экзамене план материала курса предоставляется для того, чтобы минимизировать заучивание).

3  Билинейная и полилинейная алгебра

В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)
или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-
менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.
Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-
ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих
пространств, хотя принципиальная возможность применения его в более общих случаях остается.
Статья «Тензор» в русскоязычной Википедии
(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)
и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)