Алгебра phys 1 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
__NOTOC__
 
__NOTOC__
<h3>1.1&nbsp; Матрицы, базисы, координаты</h3>
+
<h2>1&nbsp; Основы алгебры</h2>
<h5>1.1.1&nbsp; Пространства матриц, столбцов, строк</h5>
+
<table cellpadding="6" cellspacing="0">
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>По мере развития науки нам хочется получить нечто большее, чем просто формулу. Сначала мы наблюдаем явления, затем с<br>помощью измерений получаем числа и, наконец, находим закон, связывающий эти числа. Но истинное <i>величие</i> науки состоит<br>в том, что мы <i>можем найти такой способ рассуждения</i>, при котором закон становится <i>очевидным</i>.</td></tr><tr align="right"><td><i>Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Том 3: Излучение. Волны. Кванты</i></td></tr></table></td></tr></table>
 +
 
 +
<h3>1.1&nbsp; Множества, отображения, отношения</h3>
 +
<h5>1.1.1&nbsp; Высказывания и множества</h5>
 +
<ul><li>Логические связки: <math>\lnot</math> — отрицание («не»), <math>\lor</math> — дизъюнкция («или»), <math>\land</math> — конъюнкция («и»), <math>\Rightarrow</math> — импликация («влечет»), <math>\Leftrightarrow</math> — эквивалентность.
 +
<li><u>Лемма о логических связках.</u> <i>Для любых высказываний <math>a</math>, <math>b</math>, <math>c</math> выполнено<br>(1) <math>a\lor b=b\lor a</math>, <math>(a\lor b)\lor c=a\lor(b\lor c)</math>, <math>a\land b=b\land a</math>, <math>(a\land b)\land c=a\land(b\land c)</math>;<br>(2) <math>a\land(b\lor c)=(a\land b)\lor(a\land c)</math>, <math>a\lor(b\land c)=(a\lor b)\land(a\lor c)</math>;<br>(3) <math>a\lor\lnot a=\mathrm{true}</math>, <math>a\land\lnot a=\mathrm{false}</math>, <math>\lnot(a\lor b)=\lnot a\land\lnot b</math>, <math>\lnot(a\land b)=\lnot a\lor\lnot b</math>, <math>(a\Rightarrow b)=\lnot a\lor b</math>, <math>(a\Rightarrow b)=(\lnot b\Rightarrow\lnot a)</math>.</i>
 +
<li>Кванторы: <math>\exists</math> — существование, <math>\forall</math> — всеобщность («для любых»). Утверждение: <i><math>\lnot\bigl(\exists\,x\;(p(x))\bigr)\!=\!\bigl(\forall\,x\;(\lnot p(x))\bigr)</math>, <math>\lnot\bigl(\forall\,x\;(p(x))\bigr)\!=\!\bigl(\exists\,x\;(\lnot p(x))\bigr)</math></i>.</ul>
 +
 
 +
<h5>1.1.2&nbsp; ???</h5>
 +
 
 +
<h3>1.2&nbsp; Группы</h3>
 +
 
 +
<h2>2&nbsp; Линейная алгебра</h2>
 +
 
 +
<h3>2.1&nbsp; Матрицы, базисы, координаты</h3>
 +
<h5>2.1.1&nbsp; Пространства матриц, столбцов, строк</h5>
 
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.
 
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.
 
<li>Матричные единицы: <math>(\mathrm{se}_i^j)^k_l=\delta_i^k\delta^j_l</math>. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\mathrm{se}_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
 
<li>Матричные единицы: <math>(\mathrm{se}_i^j)^k_l=\delta_i^k\delta^j_l</math>. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\mathrm{se}_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
Строка 10: Строка 26:
 
<li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>b\in\mathrm{Mat}(r,p,K)</math>; тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math></i>.</ul>
 
<li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>b\in\mathrm{Mat}(r,p,K)</math>; тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math></i>.</ul>
  
<h5>1.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов</h5>
+
<h5>2.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов</h5>
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <i><math>a(e)=h\cdot a_e^h</math> и <math>\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math></i>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <i><math>a(e)=h\cdot a_e^h</math> и <math>\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math></i>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.
 
<li>Изоморфизм векторных пространств <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math>. Изоморфизм колец и векторных пространств <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>.</ul>
 
<li>Изоморфизм векторных пространств <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math>. Изоморфизм колец и векторных пространств <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>.</ul>
  
<h5>1.1.3&nbsp; Преобразования координат при замене базиса</h5>
+
<h5>2.1.3&nbsp; Преобразования координат при замене базиса</h5>
 
<ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math> и <math>\,\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>.
 
<ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math> и <math>\,\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>.
 
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>.
 
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>.
 
<li>Преобразование координат гомоморфизма: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись (если <math>a</math> — эндоморфизм): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
 
<li>Преобразование координат гомоморфизма: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись (если <math>a</math> — эндоморфизм): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
  
<h5>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
+
<h5>2.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
 
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\mathrm{se}_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\mathrm{se}_i^i)\cdot a</math>.
 
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\mathrm{se}_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\mathrm{se}_i^i)\cdot a</math>.
Строка 28: Строка 44:
 
<li>Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.</ul>
 
<li>Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.</ul>
  
<h3>1.2&nbsp; Линейные операторы (часть 1)</h3>
+
<h3>2.2&nbsp; Линейные операторы (часть 1)</h3>
<h5>1.2.1&nbsp; Ядро и образ линейного оператора</h5>
+
<h5>2.2.1&nbsp; Ядро и образ линейного оператора</h5>
 
<ul><li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U=\dim V<\infty</math>; тогда <math>U=V</math></i>.
 
<ul><li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U=\dim V<\infty</math>; тогда <math>U=V</math></i>.
 
<li>Ядро линейного оператора: <math>\mathrm{Ker}\,a=a^{-1}(0)\le V</math>. Образ линейного оператора: <math>\mathrm{Im}\,a\le Y</math>. Лемма о слоях гомоморфизма и следствие из нее.
 
<li>Ядро линейного оператора: <math>\mathrm{Ker}\,a=a^{-1}(0)\le V</math>. Образ линейного оператора: <math>\mathrm{Im}\,a\le Y</math>. Лемма о слоях гомоморфизма и следствие из нее.
Строка 37: Строка 53:
 
<li><u>Принцип Дирихле для линейных операторов.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>\dim V=\dim Y<\infty</math>;<br>тогда выполнено <math>\,\mathrm{Inj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Iso}(V,Y)</math>.</i></ul>
 
<li><u>Принцип Дирихле для линейных операторов.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>\dim V=\dim Y<\infty</math>;<br>тогда выполнено <math>\,\mathrm{Inj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Iso}(V,Y)</math>.</i></ul>
  
<h5>1.2.2&nbsp; Ранг линейного оператора</h5>
+
<h5>2.2.2&nbsp; Ранг линейного оператора</h5>
 
<ul><li>Ранг линейного оператора: <math>\mathrm{rk}(a)=\dim\mathrm{Im}\,a</math>. Ранг матрицы (ранг по столбцам): <math>\mathrm{rk}(a)=\dim\,\langle a_1,\ldots,a_n\rangle</math>. Утверждение: <math>\mathrm{rk}(a)=\mathrm{rk}(a_e^h)</math>.
 
<ul><li>Ранг линейного оператора: <math>\mathrm{rk}(a)=\dim\mathrm{Im}\,a</math>. Ранг матрицы (ранг по столбцам): <math>\mathrm{rk}(a)=\dim\,\langle a_1,\ldots,a_n\rangle</math>. Утверждение: <math>\mathrm{rk}(a)=\mathrm{rk}(a_e^h)</math>.
 
<li>Утверждение: <math>\mathrm{rk}(a)\le\min(\dim V,\dim Y)</math>. Утверждение: <i><math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim V</math> и <math>a\in\mathrm{Surj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim Y</math></i>.
 
<li>Утверждение: <math>\mathrm{rk}(a)\le\min(\dim V,\dim Y)</math>. Утверждение: <i><math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim V</math> и <math>a\in\mathrm{Surj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim Y</math></i>.
 
<li><u>Теорема о свойствах ранга.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) для любых матриц <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math> выполнено <math>\mathrm{rk}(g\cdot a\cdot g')=\mathrm{rk}(a)</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathrm{se}_1^1+\mathrm{se}_2^2+\ldots+\mathrm{se}_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(3) <math>\mathrm{rk}(a^\mathtt T)=\dim\,\langle a^1,\ldots,a^p\rangle</math> и <math>\,\mathrm{rk}(a)=\mathrm{rk}(a^\mathtt T)</math> (то есть ранг по столбцам равен рангу по строкам).</i></ul>
 
<li><u>Теорема о свойствах ранга.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) для любых матриц <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math> выполнено <math>\mathrm{rk}(g\cdot a\cdot g')=\mathrm{rk}(a)</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathrm{se}_1^1+\mathrm{se}_2^2+\ldots+\mathrm{se}_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(3) <math>\mathrm{rk}(a^\mathtt T)=\dim\,\langle a^1,\ldots,a^p\rangle</math> и <math>\,\mathrm{rk}(a)=\mathrm{rk}(a^\mathtt T)</math> (то есть ранг по столбцам равен рангу по строкам).</i></ul>
  
<h5>1.2.3&nbsp; Системы линейных уравнений</h5>
+
<h5>2.2.3&nbsp; Системы линейных уравнений</h5>
 
<ul><li>Матричная запись систем. Однородные системы. Утверждение: <i>пусть <math>a\cdot v_0=y</math>; тогда <math>\{v\in K^n\mid a\cdot v=y\}=v_0+\{v\in K^n\mid a\cdot v=0\}</math></i>.
 
<ul><li>Матричная запись систем. Однородные системы. Утверждение: <i>пусть <math>a\cdot v_0=y</math>; тогда <math>\{v\in K^n\mid a\cdot v=y\}=v_0+\{v\in K^n\mid a\cdot v=0\}</math></i>.
 
<li><u>Теорема Кронекера–Капелли.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;\bigl(a\cdot v=y\bigr)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i>
 
<li><u>Теорема Кронекера–Капелли.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;\bigl(a\cdot v=y\bigr)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i>
 
<li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul>
 
<li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul>
  
<h3>1.3&nbsp; Конструкции над векторными пространствами</h3>
+
<h3>2.3&nbsp; Конструкции над векторными пространствами</h3>
<h5>1.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
+
<h5>2.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
 
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана);<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3') если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>.</i></p>
 
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана);<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3') если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>.</i></p>
Строка 56: Строка 72:
 
<li><u>Теорема о гомоморфизме.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>V/\,\mathrm{Ker}\,a\cong\mathrm{Im}\,a</math>.</i></ul>
 
<li><u>Теорема о гомоморфизме.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>V/\,\mathrm{Ker}\,a\cong\mathrm{Im}\,a</math>.</i></ul>
  
<h5>1.3.2&nbsp; Двойственное пространство</h5>
+
<h5>2.3.2&nbsp; Двойственное пространство</h5>
 
<ul><li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
 
<ul><li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
Строка 81: Строка 97:
 
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p>
 
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p>
  
<h3>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
+
<h3>2.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
<h5>1.4.1&nbsp; Отступление о симметрических группах</h5>
+
<h5>2.4.1&nbsp; Отступление о симметрических группах</h5>
 
<ul><li>Симметрическая группа: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
 
<ul><li>Симметрическая группа: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
 
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
 
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
Строка 90: Строка 106:
 
<li>Знак перестановки: <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>. Утверждение: <i><math>\mathrm{sgn}</math> — гомоморфизм групп</i>. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>.</ul>
 
<li>Знак перестановки: <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>. Утверждение: <i><math>\mathrm{sgn}</math> — гомоморфизм групп</i>. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>.</ul>
  
<h5>1.4.2&nbsp; Полилинейные отображения и формы объема</h5>
+
<h5>2.4.2&nbsp; Полилинейные отображения и формы объема</h5>
 
<ul><li>Пространства полилинейных отображений <math>\mathrm{Multi}(V_1,\ldots,V_k,Y)</math>, <math>\mathrm{Multi}_k(V,Y)</math> и полилинейных форм <math>\mathrm{Multi}(V_1,\ldots,V_k,K)</math>, <math>\mathrm{Multi}_kV</math>.
 
<ul><li>Пространства полилинейных отображений <math>\mathrm{Multi}(V_1,\ldots,V_k,Y)</math>, <math>\mathrm{Multi}_k(V,Y)</math> и полилинейных форм <math>\mathrm{Multi}(V_1,\ldots,V_k,K)</math>, <math>\mathrm{Multi}_kV</math>.
 
<li>Пространства билинейных отображений <math>\mathrm{Bi}(V_1,V_2,Y)</math>, <math>\mathrm{Bi}(V,Y)</math> и билинейных форм <math>\mathrm{Bi}(V_1,V_2,K)</math>, <math>\mathrm{Bi}(V)</math>. Примеры полилинейных форм.
 
<li>Пространства билинейных отображений <math>\mathrm{Bi}(V_1,V_2,Y)</math>, <math>\mathrm{Bi}(V,Y)</math> и билинейных форм <math>\mathrm{Bi}(V_1,V_2,K)</math>, <math>\mathrm{Bi}(V)</math>. Примеры полилинейных форм.
Строка 98: Строка 114:
 
<li><u>Теорема о формах объема.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> и <math>\omega\in\mathrm{AMulti}_nV</math> выполнено <math>\omega=\omega(e_1,\ldots,e_n)\,\mathrm{vol}^e</math>;<br>(2) для любых <math>e\in\mathrm{OB}(V)</math> множество <math>\{\mathrm{vol}^e\}</math> — базис пространства <math>\,\mathrm{AMulti}_nV</math>;<br>(3) для любых <math>v_1,\ldots,v_n\in V</math> и <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math> выполнено <math>(v_1,\ldots,v_n)\in\mathrm{OB}(V)\,\Leftrightarrow\,\omega(v_1,\ldots,v_n)\ne0</math>.</i></ul>
 
<li><u>Теорема о формах объема.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> и <math>\omega\in\mathrm{AMulti}_nV</math> выполнено <math>\omega=\omega(e_1,\ldots,e_n)\,\mathrm{vol}^e</math>;<br>(2) для любых <math>e\in\mathrm{OB}(V)</math> множество <math>\{\mathrm{vol}^e\}</math> — базис пространства <math>\,\mathrm{AMulti}_nV</math>;<br>(3) для любых <math>v_1,\ldots,v_n\in V</math> и <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math> выполнено <math>(v_1,\ldots,v_n)\in\mathrm{OB}(V)\,\Leftrightarrow\,\omega(v_1,\ldots,v_n)\ne0</math>.</i></ul>
  
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
+
<h5>2.4.3&nbsp; Определитель линейного оператора</h5>
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math>. Корректность определения.
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math>. Корректность определения.
 
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> (напоминание: <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times</math>);<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\!\biggr)</math> определено корректно и является гомоморфизмом групп).</i>
 
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> (напоминание: <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times</math>);<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\!\biggr)</math> определено корректно и является гомоморфизмом групп).</i>
Строка 106: Строка 122:
 
<li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul>
 
<li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul>
  
<h5>1.4.4&nbsp; Миноры матрицы и присоединенная матрица</h5>
+
<h5>2.4.4&nbsp; Миноры матрицы и присоединенная матрица</h5>
 
<ul><li>Миноры. Дополнительные миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнительный минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
 
<ul><li>Миноры. Дополнительные миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнительный минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) <math>\forall\,i,k\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k\Bigr)</math> и <math>\forall\,j,l\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j\Bigr)</math> (в частности,<br>при <math>i=k</math> имеем <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a\Bigr)</math> и при <math>j=l</math> имеем <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a\Bigr)</math>;<br>это формулы разложения определителя матрицы <math>a</math> по <math>i</math>-й строке матрицы <math>a</math> и по <math>j</math>-му столбцу матрицы <math>a</math> соответственно);<br>(2) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}=\frac1{\det a}\,\mathrm{adj}(a)</math>.</i>
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) <math>\forall\,i,k\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k\Bigr)</math> и <math>\forall\,j,l\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j\Bigr)</math> (в частности,<br>при <math>i=k</math> имеем <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a\Bigr)</math> и при <math>j=l</math> имеем <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a\Bigr)</math>;<br>это формулы разложения определителя матрицы <math>a</math> по <math>i</math>-й строке матрицы <math>a</math> и по <math>j</math>-му столбцу матрицы <math>a</math> соответственно);<br>(2) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}=\frac1{\det a}\,\mathrm{adj}(a)</math>.</i>
 
<li><u>Правило Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>j\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^j=\frac{\det\!\bigl(a_1\;\ldots\;a_{j-1}\;\,y\;\,a_{j+1}\;\ldots\;a_n\bigr)}{\det a}</math>.</i>
 
<li><u>Правило Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>j\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^j=\frac{\det\!\bigl(a_1\;\ldots\;a_{j-1}\;\,y\;\,a_{j+1}\;\ldots\;a_n\bigr)}{\det a}</math>.</i>
 
<li><u>Теорема о базисном миноре.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда <math>\mathrm{rk}(a)</math> равен максимальному среди всех таких чисел<br><math>t\in\mathbb N_0</math>, что в матрице <math>a</math> существует такая подматрица <math>a'</math> размера <math>t\times t</math>, что <math>\det a'\ne0</math>.</i></ul>
 
<li><u>Теорема о базисном миноре.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда <math>\mathrm{rk}(a)</math> равен максимальному среди всех таких чисел<br><math>t\in\mathbb N_0</math>, что в матрице <math>a</math> существует такая подматрица <math>a'</math> размера <math>t\times t</math>, что <math>\det a'\ne0</math>.</i></ul>

Версия 20:30, 7 августа 2016

1  Основы алгебры

По мере развития науки нам хочется получить нечто большее, чем просто формулу. Сначала мы наблюдаем явления, затем с
помощью измерений получаем числа и, наконец, находим закон, связывающий эти числа. Но истинное величие науки состоит
в том, что мы можем найти такой способ рассуждения, при котором закон становится очевидным.
Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Том 3: Излучение. Волны. Кванты

1.1  Множества, отображения, отношения

1.1.1  Высказывания и множества
  • Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
  • Лемма о логических связках. Для любых высказываний , , выполнено
    (1) , , , ;
    (2) , ;
    (3) , , , , , .
  • Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
1.1.2  ???

1.2  Группы

2  Линейная алгебра

2.1  Матрицы, базисы, координаты

2.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы: . Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Строки матрицы: . Столбцы матрицы: . Утверждение: и .
  • След матрицы: . Утверждение: пусть и ; тогда .
  • Транспонирование матрицы: . Утверждение: пусть и ; тогда .
2.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств . Изоморфизм колец и векторных пространств .
2.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат гомоморфизма: . Покомпонентная запись (если — эндоморфизм): .
2.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

2.2  Линейные операторы (часть 1)

2.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
2.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
2.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

2.3  Конструкции над векторными пространствами

2.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ;
    обозначим через отображение ; тогда
    (1) , и ;
    (2) если , то (это формула Грассмана);
    (3) ;
    (3') если , то .

  • Инвариантное относительно эндоморфизма подпространство: . Матрица эндоморфизма, имеющего инвариантное подпространство.
  • Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
2.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
  • Сводная таблица о координатах. (В таблице — поле, — векторное пространство над полем , и .)

Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.4  Полилинейные отображения, формы объема, определитель

2.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любых из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
2.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений , и полилинейных форм , .
  • Пространства билинейных отображений , и билинейных форм , . Примеры полилинейных форм.
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема (). Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
2.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) (напоминание: );
    (2) для любых выполнено
    (и, значит, отображение определено корректно и является гомоморфизмом групп).
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Лемма об определителе оператора и определителе матрицы. Пусть — поле, — векторное пространство над полем , ,
    и ; обозначим через число ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
2.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и (в частности,
    при имеем и при имеем ;
    это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (2) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел
    , что в матрице существует такая подматрица размера , что .