Алгебра phys 1 весна 2016 — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 89: | Строка 89: | ||
<h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | <h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | ||
− | <ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\cdot\omega'(v_1',\ldots,v_{k'}')</math>. | + | <ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\cdot\omega'(v_1',\ldots,v_{k'}')</math>. Свойства операции <math>\otimes</math>. |
<li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e_{j_1}^*\!\otimes\ldots\otimes e_{j_k}^*\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}^kV</math></i>. | <li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e_{j_1}^*\!\otimes\ldots\otimes e_{j_k}^*\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}^kV</math></i>. | ||
<li>Алгебра полилинейных форм (ковариантных тензоров): <math>\mathrm{Multi}(V)=\bigoplus_{k=0}^\infty\mathrm{Multi}^kV</math>. Утверждение: <i><math>\mathrm{Multi}(V)</math> — ассоциативная <math>K</math>-алгебра с <math>1</math></i>. | <li>Алгебра полилинейных форм (ковариантных тензоров): <math>\mathrm{Multi}(V)=\bigoplus_{k=0}^\infty\mathrm{Multi}^kV</math>. Утверждение: <i><math>\mathrm{Multi}(V)</math> — ассоциативная <math>K</math>-алгебра с <math>1</math></i>. | ||
<li>Моном (слово) от свободных переменных <math>x_1,\ldots,x_n</math> степени <math>k</math>: <math>x_{j_1}\!\otimes\ldots\otimes x_{j_k}</math> (<math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math>). Моноид слов <math>\mathrm W(x_1,\ldots,x_n)</math>. | <li>Моном (слово) от свободных переменных <math>x_1,\ldots,x_n</math> степени <math>k</math>: <math>x_{j_1}\!\otimes\ldots\otimes x_{j_k}</math> (<math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math>). Моноид слов <math>\mathrm W(x_1,\ldots,x_n)</math>. | ||
<li>Пространство однородных многочленов степени <math>k</math>: <math>K_\otimes[x_1,\ldots,x_n]_k</math>. Алгебра многочленов: <math>K_\otimes[x_1,\ldots,x_n]=\bigoplus_{k=0}^\infty K_\otimes[x_1,\ldots,x_n]_k</math>. | <li>Пространство однородных многочленов степени <math>k</math>: <math>K_\otimes[x_1,\ldots,x_n]_k</math>. Алгебра многочленов: <math>K_\otimes[x_1,\ldots,x_n]=\bigoplus_{k=0}^\infty K_\otimes[x_1,\ldots,x_n]_k</math>. | ||
− | <li><u>Теорема об алгебре полилинейных форм.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — | + | <li><u>Теорема об алгебре полилинейных форм.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>;<br>тогда отображение, продолжающее по линейности частичное отображение <math>\biggl(\!\begin{align}K_\otimes[x_1,\ldots,x_n]&\to\mathrm{Multi}(V)\\x_{j_1}\!\otimes\ldots\otimes x_{j_k}&\mapsto e_{j_1}^*\!\otimes\ldots\otimes e_{j_k}^*\end{align}\!\biggr)</math>, — изоморфизм алгебр с <math>1</math>.</i></ul> |
<h5>1.7.3 Тело кватернионов</h5> | <h5>1.7.3 Тело кватернионов</h5> | ||
− | <ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>.</ul> | + | <ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>. |
+ | <li>Скалярная и векторная части: <math>\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k=\alpha+v</math>, где <math>v\in\mathbb R^3</math>. Формула <math>(\alpha+v)(\alpha'+v')=(\alpha\alpha'-(v,v'))+(\alpha v'+\alpha'v+v\times v')</math>.</ul> | ||
<h5>1.7.4 Алгебры Ли (основные определения и примеры)</h5> | <h5>1.7.4 Алгебры Ли (основные определения и примеры)</h5> |
Версия 16:40, 11 мая 2016
1 Линейная алгебра
|
Материал первой половины второго семестра курса алгебры
Содержание первой половины второго семестра курса алгебры
1.1 Матрицы, базисы, координаты
- 1.1.1 Пространства матриц, столбцов, строк
- 1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- 1.1.3 Преобразования координат при замене базиса
- 1.1.4 Элементарные матрицы и приведение к ступенчатому виду
1.2 Линейные операторы (часть 1)
- 1.2.1 Ядро и образ линейного оператора
- 1.2.2 Ранг линейного оператора
- 1.2.3 Системы линейных уравнений
1.3 Конструкции над векторными пространствами
- 1.3.1 Прямая сумма векторных пространств и факторпространства
- 1.3.2 Двойственное пространство
1.4 Полилинейные отображения, формы объема, определитель
- 1.4.1 Отступление о симметрических группах
- 1.4.2 Полилинейные отображения и формы объема
- 1.4.3 Определитель линейного оператора
- 1.4.4 Миноры матрицы и присоединенная матрица
Материал второй половины второго семестра курса алгебры
1.5 Линейные операторы (часть 2)
1.5.1 Многочлены от операторов
- Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
- Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
- Минимальный многочлен оператора: , приведен, ; .
- Утверждение: пусть и ; тогда и, если и делит , то .
- Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
и ; тогда . - Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
, и , где , и попарно взаимно просты; тогда . - Проектор (идемпотент): . Нильпотентный оператор: .
1.5.2 Спектр оператора и характеристический многочлен оператора
- Спектр оператора: ; если , то .
- Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
- Утверждение: . Утверждение: (и, значит, ).
- Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
- Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
(1) многочлен делит многочлен (и, значит, );
(2) ;
(3) если — нильпотентный оператор, то .
1.5.3 Собственные и корневые подпространства оператора
- Обобщенные собственные подпространства: . Корневые подпространства: .
- Цепь -инвариантных подпространств: ; вывод: .
- Относительные геометрические кратности: и . Утверждение: .
- Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
тогда следующие условия эквивалентны:
(1) существует такой упорядоченный базис , что — диагональная матрица;
(2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
(3) (это разложение пространства в прямую сумму собственных подпространств оператора );
(3') . - Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
(1) для любых выполнено ;
(2) и . - Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
, и многочлен раскладывается в произведение многочленов степени в кольце (если , то
это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
(1) (это разложение пространства в прямую сумму корневых подпространств оператора );
(2) для любых , обозначая через оператор , имеем следующие факты: для любых
выполнено , а также — нильпотентный оператор и .
1.6 Линейные операторы (часть 3)
1.6.1 Относительные базисы
- Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
- Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.
Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
(1) — базис в относительно ;
(1') — независимое подмножество в и ;
(2) — максимальное независимое подмножество в относительно ;
(3) — минимальное порождающее подмножество в относительно .
Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .
Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
относительно ; тогда — базис в относительно . - Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
относительно ; тогда — биекция и — независимое подмножество в относительно . - Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
, и ; тогда .
1.6.2 Жорданова нормальная форма оператора
- Жордановы клетки: и . Прямая сумма матриц: .
- Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
- Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
, — нильпотентный оператор; тогда существует такой упорядоченный базис , что . - Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
(то есть матрица раскладывается в прямую сумму жордановых блоков).
1.6.3 Примеры использования жордановой нормальной формы в анализе и физике
- Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
- Экспонента от оператора: . Утверждение: пусть ; тогда . Утверждение: .
- Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
- Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
- Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
- Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.
1.7 Алгебры
1.7.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
- Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
- Примеры алгебр: -алгебры , , , и ; -алгебры , с векторным умножением, и .
- Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
- Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над полем ,
получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — эндоморфизм векторного
пространства (то есть элемент -алгебры );
(2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с . - Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
1.7.2 Полилинейные формы и многочлены от свободных переменных
- Тензорное произведение полилинейных форм: . Свойства операции .
- Утверждение: пусть и ; тогда множество — базис пространства .
- Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
- Моном (слово) от свободных переменных степени : (). Моноид слов .
- Пространство однородных многочленов степени : . Алгебра многочленов: .
- Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
1.7.3 Тело кватернионов
- -Алгебра кватернионов: , где и , , .
- Скалярная и векторная части: , где . Формула .
1.7.4 Алгебры Ли (основные определения и примеры)
2 Билинейная алгебра
3 Полилинейная алгебра
| ||||||||
|