Алгебра phys 1 весна 2016 — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 62: | Строка 62: | ||
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <i><math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l</math></i>. | <li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <i><math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l</math></i>. | ||
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>v\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)</math>.</ul> | <li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>v\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)</math>.</ul> | ||
+ | |||
+ | <table border="1" cellspacing="0"> | ||
+ | <tr><th>Объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат при замене базиса</th><th>Пример использования в<br>аналитических науках</th></tr> | ||
+ | <tr align=center><td>вектор <math>v\in V</math><br>(тензор типа <math>(1,0)</math> над <math>V</math>)</td> | ||
+ | <td>изоморфизм векторных пространств:<br><math>V\to K^n</math><br><math>v\mapsto v^e</math></td> | ||
+ | <td>матричная запись: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math><br>покомпонентая запись: <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(v^\tilde i=\sum_{k=1}^{\dim V}(e_k)^\tilde i\,v^k\bigr)</math><br>преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math></td> | ||
+ | <td>скорость в точке<br>гладкого пути на многообразии</td></tr> | ||
+ | <tr align=center><td>ковектор <math>\lambda\in V^*</math><br>(тензор типа <math>(0,1)</math> над <math>V</math>)</td> | ||
+ | <td>изоморфизм векторных пространств:<br><math>V^*\to{}^n\!K</math><br><math>\lambda\mapsto\lambda_e</math></td> | ||
+ | <td>матричная запись: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math><br>покомпонентая запись: <math>\forall\,j\in\{1,\ldots,n\}\;\bigl(\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l\bigr)</math><br>преобразование базиса: <math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math></td> | ||
+ | <td>дифференциал в точке<br>гладкой функции (скалярного поля) на многообразии</td></tr></table> | ||
+ | |||
+ | <math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math>. | ||
+ | |||
+ | <math>a^\tilde i_\tilde j=\sum_{k=1}^{\dim V}\sum_{l=1}^{\dim V}(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>. | ||
<h3>1.4 Полилинейные отображения, формы объема, определитель</h3> | <h3>1.4 Полилинейные отображения, формы объема, определитель</h3> |
Версия 23:40, 27 февраля 2016
1 Векторные пространства
1.1 Матрицы, базисы, координаты
1.1.1 Пространства матриц, столбцов, строк
- Пространство матриц . Пространство столбцов: . Пространство строк: .
- Матричные единицы. Стандартный базис пространства : .
- Стандартный базис пространства : . Стандартный базис пространства : .
- Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
- Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
- Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
- Матрица гомоморфизма: . Утверждение: и . Утверждение: .
- Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3 Преобразования координат при замене базиса
- Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
- Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
- Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4 Элементарные матрицы и приведение к ступенчатому виду
- Элементарные трансвекции и псевдоотражения .
- Элементарные преобразования над строками первого типа и второго типа .
- Элементарные преобразования над столбцами первого типа и второго типа .
- Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
(1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ). - Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.
1.2 Линейные операторы
1.2.1 Ядро и образ линейного оператора
- Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
- Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.
Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .
Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .
- Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
и ; тогда выполнено . - Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
тогда выполнено .
1.2.2 Ранг линейного оператора
- Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
- Утверждение: . Утверждение: и .
- Теорема о свойствах ранга. Пусть — поле, и ; тогда
(1) для любых матриц и выполнено ;
(2) существуют такие матрицы и , что ;
(3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3 Системы линейных уравнений
- Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
- Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
- Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .
1.3 Конструкции над векторными пространствами
1.3.1 Прямая сумма векторных пространств и факторпространства
- Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ; обозначим через
отображение, действующее из в по правилу для любых и ; тогда
(1) , и ;
(2) если , то ;
(3) . - Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
- Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
- Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
- Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2 Двойственное пространство
- Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
- Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
- Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
Объект | Координаты относительно базиса | Преобразование координат при замене базиса | Пример использования в аналитических науках |
---|---|---|---|
вектор (тензор типа над ) |
изоморфизм векторных пространств: |
матричная запись: покомпонентая запись: преобразование базиса: |
скорость в точке гладкого пути на многообразии |
ковектор (тензор типа над ) |
изоморфизм векторных пространств: |
матричная запись: покомпонентая запись: преобразование базиса: |
дифференциал в точке гладкой функции (скалярного поля) на многообразии |
.
.
1.4 Полилинейные отображения, формы объема, определитель
1.4.1 Отступление о симметрических группах
- Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
- Утверждение: . Утверждение: .
- Транспозиции и фундаментальные транспозиции . Число циклов .
- Лемма об умножении на транспозицию. Пусть , , и ; тогда
(1) если числа и принадлежат одному циклу в перестановке , то ;
(2) если числа и принадлежат разным циклам в перестановке , то . - Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
(1) существуют такие транспозиции , что ;
(2) для любого из существования таких транспозиций , что , следует, что и . - Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2 Полилинейные отображения и формы объема
- Пространства полилинейных отображений и и полилинейных форм и .
- Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
- Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
(1) ;
(2) для любых и таких , что — транспозиция, выполнено ;
(3) для любых и выполнено . - Пространство форм объема , где . Форма объема, связанная с базисом: .
- Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
(1) для любых и выполнено ;
(2) для любых множество — базис пространства ;
(3) для любых и выполнено .
1.4.3 Определитель линейного оператора
- Определитель линейного оператора: , где . Корректность определения.
- Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) отображение, действующее из в по правилу для любых , — гомоморфизм групп. - Определитель матрицы: . Утверждение: пусть ; тогда .
- Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
- Специальные линейные группы: и .
1.4.4 Миноры матрицы и присоединенная матрица
- Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
- Теорема о присоединенной матрице. Пусть — поле, и ; тогда
(1) и ;
(2) и ;
(3) и, если , то . - Формулы Крамера. Пусть — поле, , , и ; тогда .