Алгебра phys 1 весна 2016 — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
<h3>1.1 Матрицы, базисы, координаты</h3> | <h3>1.1 Матрицы, базисы, координаты</h3> | ||
− | <h5>1.1.1 | + | <h5>1.1.1 Пространства матриц, столбцов, строк</h5> |
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>. | <ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>. | ||
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>. | <li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>. | ||
Строка 35: | Строка 35: | ||
<ul><li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <math>U\le V\;\land\;\dim U=\dim V<\infty\,\Rightarrow\,U=V</math>. | <ul><li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <math>U\le V\;\land\;\dim U=\dim V<\infty\,\Rightarrow\,U=V</math>. | ||
<li>Ядро линейного оператора: <math>\mathrm{Ker}\,a=a^{-1}(0)\le V</math>. Образ линейного оператора: <math>\mathrm{Im}\,a\le Y</math>. Лемма о слоях гомоморфизма и следствие из нее. | <li>Ядро линейного оператора: <math>\mathrm{Ker}\,a=a^{-1}(0)\le V</math>. Образ линейного оператора: <math>\mathrm{Im}\,a\le Y</math>. Лемма о слоях гомоморфизма и следствие из нее. | ||
− | <p>Лемма о слоях гомоморфизма. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>, <math>y\in Y</math>, <math> | + | <p>Лемма о слоях гомоморфизма. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>, <math>y\in Y</math>, <math>v_0\in a^{-1}(y)</math>; тогда <math>a^{-1}(y)=v_0+\mathrm{Ker}\,a</math>.</i></p> |
<p>Следствие из леммы о слоях гомоморфизма. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{Ker}\,a=\{0\}</math>.</i></p> | <p>Следствие из леммы о слоях гомоморфизма. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{Ker}\,a=\{0\}</math>.</i></p> | ||
− | <li>Теорема о | + | <li>Теорема о размерностях ядра и образа. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math>.</i> |
<li>Принцип Дирихле для линейных отображений. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над <math>K</math>, <math>\dim V=\dim Y<\infty</math>; тогда<br><math>\mathrm{Inj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Isom}(V,Y)</math> (обозначение: <math>\mathrm{Isom}(V,Y)=\mathrm{Bij}(V,Y)\cap\mathrm{Hom}(V,Y)</math>).</i></ul> | <li>Принцип Дирихле для линейных отображений. <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над <math>K</math>, <math>\dim V=\dim Y<\infty</math>; тогда<br><math>\mathrm{Inj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Isom}(V,Y)</math> (обозначение: <math>\mathrm{Isom}(V,Y)=\mathrm{Bij}(V,Y)\cap\mathrm{Hom}(V,Y)</math>).</i></ul> | ||
Строка 46: | Строка 46: | ||
<li>Неравенство Сильвестра. <i>Пусть <math>K</math> — поле, <math>n,p,r\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math>, <math>b\in\mathrm{Mat}(r,p,K)</math>; тогда <math>\mathrm{rk}(a)+\mathrm{rk}(b)-p\le\mathrm{rk}(b\cdot a)\le\min(\mathrm{rk}(a),\mathrm{rk}(b))</math>.</i></ul> | <li>Неравенство Сильвестра. <i>Пусть <math>K</math> — поле, <math>n,p,r\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math>, <math>b\in\mathrm{Mat}(r,p,K)</math>; тогда <math>\mathrm{rk}(a)+\mathrm{rk}(b)-p\le\mathrm{rk}(b\cdot a)\le\min(\mathrm{rk}(a),\mathrm{rk}(b))</math>.</i></ul> | ||
− | <h5>1.2.3 | + | <h5>1.2.3 Системы линейных уравнений</h5> |
− | <ul><li>Метод Гаусса | + | <ul><li>Матричная запись систем. Однородные системы. Утверждение: <math>a\cdot v_0=y\,\Rightarrow\,\{v\in K^n\mid a\cdot v=y\}=v_0+\{v\in K^n\mid a\cdot v=0\}</math>. |
+ | <li>Теорема Кронекера–Капелли. <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math>, <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;(a\cdot v=y)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i> | ||
+ | <li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul> | ||
<h3>1.3 Конструкции над векторными пространствами</h3> | <h3>1.3 Конструкции над векторными пространствами</h3> | ||
Строка 58: | Строка 60: | ||
<h3>1.4 Полилинейные отображения и определитель</h3> | <h3>1.4 Полилинейные отображения и определитель</h3> | ||
+ | |||
+ | <h5>1.4.1 Пространства полилинейных отображений</h5> | ||
+ | |||
+ | <h5>1.4.2 Отступление о симметрических группах</h5> | ||
+ | |||
+ | <h5>1.4.3 Определитель матрицы</h5> | ||
+ | |||
+ | <h3>1.5 Жорданова нормальная форма</h3> |
Версия 03:20, 16 февраля 2016
1 Векторные пространства и линейные операторы
1.1 Матрицы, базисы, координаты
1.1.1 Пространства матриц, столбцов, строк
- Пространство матриц . Пространство столбцов: . Пространство строк: .
- Матричные единицы. Стандартный базис пространства : .
- Стандартный базис пространства : . Стандартный базис пространства : .
- Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
- Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
- Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
- Матрица гомоморфизма: . Утверждение: и . Утверждение: .
- Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3 Преобразования координат при замене базиса
- Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
- Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
- Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4 Элементарные матрицы и приведение к ступенчатому виду
- Элементарные трансвекции и псевдоотражения .
- Элементарные преобразования над строками первого типа и второго типа .
- Элементарные преобразования над столбцами первого типа и второго типа .
- Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, , ; тогда
(1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ). - Нахождение базиса подпространства, порожденного множеством, с помощью теоремы о приведении матрицы к ступенчатому виду.
1.2 Линейные операторы
1.2.1 Ядро и образ линейного оператора
- Отступление о свойствах базиса. Утверждение: . Утверждение: .
- Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.
Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .
Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .
- Теорема о размерностях ядра и образа. Пусть — поле, — вект. пр. над , , ; тогда .
- Принцип Дирихле для линейных отображений. Пусть — поле, — векторные пространства над , ; тогда
(обозначение: ).
1.2.2 Ранг линейного оператора
- Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
- Утверждение: , , . Теорема о свойствах ранга.
Теорема о свойствах ранга. Пусть — поле, , ; тогда
(1) для любых матриц и выполнено ;
(2) существуют такие матрицы и , что ;
(3) и (то есть ранг по столбцам равен рангу по строкам). - Неравенство Сильвестра. Пусть — поле, , , ; тогда .
1.2.3 Системы линейных уравнений
- Матричная запись систем. Однородные системы. Утверждение: .
- Теорема Кронекера–Капелли. Пусть — поле, , , ; тогда .
- Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .