Матан, 1 семестр, 2014/15 — различия между версиями
Материал из SEWiki
(→Домашнее задание к 11.09) |
(→Домашнее задание к 11.09) |
||
Строка 13: | Строка 13: | ||
# Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные. | # Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные. | ||
− | # <math>F \subseteq 2^\mathbb{N}</math>. Два независимых пункта с условием: | + | # <math>F \subseteq 2^\mathbb{N}</math>. Может ли F быть несчётным? Два независимых пункта с условием: |
## <math>\forall A, B \subseteq F, A \neq B:</math> либо <math>A \subseteq B</math>, либо <math>B \subseteq A</math> | ## <math>\forall A, B \subseteq F, A \neq B:</math> либо <math>A \subseteq B</math>, либо <math>B \subseteq A</math> | ||
## <math>\forall A, B \subseteq F, A \neq B: |A \cap B| < \infty</math> | ## <math>\forall A, B \subseteq F, A \neq B: |A \cap B| < \infty</math> | ||
− | |||
# <math>E \subseteq \mathbb{N}, |E| = \infty</math>. Доказать, что существует <math>a \in \mathbb{R}, a > 1</math> такое, что существует существует бесконечно много натуральных <math>n</math> таких, что <math>\left\lfloor{a^n}\right\rfloor \in E</math> (<math>\left\lfloor x \right\rfloor</math> - целая часть <math>x</math> или округление вниз). | # <math>E \subseteq \mathbb{N}, |E| = \infty</math>. Доказать, что существует <math>a \in \mathbb{R}, a > 1</math> такое, что существует существует бесконечно много натуральных <math>n</math> таких, что <math>\left\lfloor{a^n}\right\rfloor \in E</math> (<math>\left\lfloor x \right\rfloor</math> - целая часть <math>x</math> или округление вниз). |
Версия 09:24, 8 сентября 2014
Группа Фёдора Петрова
Домашнее задание на семестр
Отчётность: без понятия
- Существует ли биективный многочлен :
Домашнее задание к 11.09
Отчётность: решаем, на занятии обсуждаем.
- Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные.
- . Может ли F быть несчётным? Два независимых пункта с условием:
- либо , либо
- . Доказать, что существует такое, что существует существует бесконечно много натуральных таких, что ( - целая часть или округление вниз).