Алгебра phys 1 апрель–май — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 74: | Строка 74: | ||
<p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}</math>.</i></p> | <p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}</math>.</i></p> | ||
<li>Неотриц. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>. | <li>Неотриц. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>. | ||
− | <li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>, | + | <li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>, <math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m\in V</math>; тогда<br>(1) <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=\!\sqrt{\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}}</math>;<br>(2) если <math>m\ge1</math>, то <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}|_{m-1}(v_1,\ldots,v_{m-1})\cdot\|v_m\!-\mathrm{proj}_{\langle v_1,\ldots,v_{m-1}\rangle}(v_m)\|</math>.</i> |
− | <math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m\in V</math>; тогда<br>(1) <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=\!\sqrt{\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}}</math>;<br>(2) если <math>m\ge1</math>, то <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}|_{m-1}(v_1,\ldots,v_{m-1})\cdot\|v_m\!-\mathrm{proj}_{\langle v_1,\ldots,v_{m-1}\rangle}(v_m)\|</math>.</i> | + | |
<li>Вект. произв. в псевдоевкл. пр.-ве с ориент.: <math>v_1\times\ldots\times v_{n-1}=\sharp\,\bigl(v_n\!\mapsto\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math> (<math>\Leftrightarrow\,\forall\,v_n\in V\;\bigl((v_1\times\ldots\times v_{n-1}\!\mid\!v_n)=\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math>). | <li>Вект. произв. в псевдоевкл. пр.-ве с ориент.: <math>v_1\times\ldots\times v_{n-1}=\sharp\,\bigl(v_n\!\mapsto\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math> (<math>\Leftrightarrow\,\forall\,v_n\in V\;\bigl((v_1\times\ldots\times v_{n-1}\!\mid\!v_n)=\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math>). | ||
<li>Векторное произведение в коорд.: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\sigma^{i,j_n}\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>. Теорема о векторном произведении. | <li>Векторное произведение в коорд.: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\sigma^{i,j_n}\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>. Теорема о векторном произведении. | ||
Строка 83: | Строка 82: | ||
<h5>10.1 Определения и конструкции, связанные с алгебрами</h5> | <h5>10.1 Определения и конструкции, связанные с алгебрами</h5> | ||
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>. | <ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>. | ||
− | <li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i | + | <li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>. |
<li>Теорема Кэли для ассоциативных алгебр с <math>1</math>. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>. | <li>Теорема Кэли для ассоциативных алгебр с <math>1</math>. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>. | ||
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p> | <p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p> | ||
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>. | <li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>. | ||
<li>Моноидная алгебра (<math>M</math> — моноид): <math>K[M]=\mathrm{FinFunc}(M,K)</math>; общий вид эл.-та: <math>\sum_{m\in M}p_mm</math> (<math>|\{m\in M\mid p_m\ne0\}|<\infty</math>); умнож.-е в <math>K[M]</math>: свертка. | <li>Моноидная алгебра (<math>M</math> — моноид): <math>K[M]=\mathrm{FinFunc}(M,K)</math>; общий вид эл.-та: <math>\sum_{m\in M}p_mm</math> (<math>|\{m\in M\mid p_m\ne0\}|<\infty</math>); умнож.-е в <math>K[M]</math>: свертка. | ||
− | <li>Алгебра многочленов от | + | <li>Алгебра многочленов от свободных переменных: <math>K\langle x_1,\ldots,x_n\rangle=K[\mathrm W(x_1,\ldots,x_n)]</math>. Одночлены: <math>x_{j_1}\!\otimes\ldots\otimes x_{j_k}</math>. Степень. Однородные многочлены. |
<li>Алгебра многочленов от комм. перем.: <math>K[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)^\mathtt{ab}]</math>. Одночлены: <math>x_{j_1}\!\cdot\ldots\cdot x_{j_k}</math> (<math>j_1\le\ldots\le j_k</math>). Степень. Однор. многочлены. | <li>Алгебра многочленов от комм. перем.: <math>K[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)^\mathtt{ab}]</math>. Одночлены: <math>x_{j_1}\!\cdot\ldots\cdot x_{j_k}</math> (<math>j_1\le\ldots\le j_k</math>). Степень. Однор. многочлены. | ||
<li>Алгебра многочленов от антикомм. перем.: <math>K_\wedge[x_1,\ldots,x_n]=K_\otimes[x_1,\ldots,x_n]/\bigl(\{x_i\otimes x_j+x_j\otimes x_i\mid i,j\in\{1,\ldots,n\}\}\cup\{x_1\otimes x_1,\ldots,x_n\otimes x_n\}\bigr)</math>.</ul> | <li>Алгебра многочленов от антикомм. перем.: <math>K_\wedge[x_1,\ldots,x_n]=K_\otimes[x_1,\ldots,x_n]/\bigl(\{x_i\otimes x_j+x_j\otimes x_i\mid i,j\in\{1,\ldots,n\}\}\cup\{x_1\otimes x_1,\ldots,x_n\otimes x_n\}\bigr)</math>.</ul> |
Версия 20:00, 10 декабря 2018
Подробный план второй половины второго семестра курса алгебры
8 Векторные пространства с ¯-билинейной формой
8.1 ¯-Билинейные формы
- Пространство билинейных форм: . Примеры: (, ), (, ).
- Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
- Матрица Грама формы : . Обобщенная матрица Грама: . Теорема о матрице Грама.
Теорема о матрице Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , и ; тогда
(1) для любых выполнено (координаты вычисляются относительно );
(2) для любых и выполнено . - Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
- Пр.-ва ¯-симметричных форм и матриц: и .
- Пр.-ва ¯-антисимм. форм и матриц: и .
- Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
- Изоморфизмы между пр.-вами с формой: и .
8.2 ¯-Квадратичные формы
- Пространство ¯-квадратичных форм: . Утверждение: .
- ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
- Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем следующие факты:
— симметричная билинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем
следующие факты: — полуторалинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Гиперповерхность второго порядка в пространстве : множество вида , где , и .
- Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
8.3 Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
- Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
- Случай : невырождена — биекция. Ранг формы : . Утверждение: .
- Топологическая невырожденность ( или , — нормир. пр.-во, ): — биекция.
- Пример: или , и ; тогда топологич. невырождена (без док.-ва).
- Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
- Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , и
; тогда , если и только если и форма невырождена. - Ортогональные векторы (): . Ортогональное дополнение: .
- Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
(1) , , и ;
(2) если и форма невырождена, то , а также и ;
(3) и, если , то форма невырождена;
(4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
8.4 Диагонализация ¯-симметричных ¯-билинейных форм
- Ортогональный базис: — диагональная матрица. Форма в ортогональн. коорд. (): .
- Ортонормированный базис ( или ): — диагональная матрица с на диагонали.
- Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
тогда существует такой вектор , что (то есть существует неизотропный вектор). - Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.
Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
(1) в пространстве существует ортогональный базис (то есть );
(2) если или , то в пространстве существует ортонормированный базис (то есть ).Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
(1) существует такая матрица , что — диагональная матрица;
(2) если или , то сущ.-т такая матрица , что — диаг. матрица с на диагонали. - Лемма об ортогональном проекторе. Пусть — поле с инволюцией, — вект. пр.-во над , , , , ,
форма невырождена и ; тогда и, если , то . - Лемма об определителе матрицы Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , , ,
, форма невырождена и ; тогда . - Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
и ; для любых обозначим через пространство и обозначим через -й угловой минор
матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
обозначим через вектор . Тогда для любых выполнено и ,
а также (это индуктивная формула для нахождения векторов ). - Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).
9 Геометрия в векторных пространствах над или
9.1 Положительно и отрицательно определенные формы и сигнатура формы
- Мн.-ва положительно и отрицательно определенных форм: и .
- Мн.-ва полож. и отриц. опред. матриц: и .
- Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
(1) если и , то и, если , то форма невырождена и ;
(2) если , то , если и только если ;
(3) если и , то , если и только если . - Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
для любых обозначим через -й угловой минор матрицы ; тогда
(1) , если и только если ;
(2) , если и только если . - Индексы инерции формы : и .
- Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
(1) (и, значит, число не зависит от );
(2) (и, значит, число не зависит от );
(3) . - Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
и ; тогда , если и только если , и . - Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
9.2 Предгильбертовы пространства
- Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
- Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
- Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
- Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
(1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
(2) для любых выполнено (это неравенство треугольника);
(3) если , то для любых и выполнено и (это равенство Парсеваля). - Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.
Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
(1) для любых выполнено ;
(2) если , то для любых выполнено ;
(3) если , то и для любых выполнено ;
(4) если , то для любых и выполнено и (это нерав.-во Бесселя). - Метод наименьших квадратов: замена системы , где , и , на систему .
- Угол между векторами и между вектором и подпр.-вом (, , , ): и .
- Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
9.3 Ориентация, объем, векторное произведение
- Отн.-е одинак. ориентированности ( — кон.-мерн. в. пр. над , ): . Утверждение: .
- Ориентация пр.-ва — выбор эл.-та мн.-ва . Знак набора векторов: . Теорема о знаке базиса и формах объема.
Теорема о знаке базиса и формах объема. Пусть — векторное простр.-во с ориентацией и ; тогда для любых выполнено
, а также множество , равное , не зависит от выбора упорядоченного базиса . - Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (): ; если , то .
- Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.
Лемма об объеме и матрице Грама. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
(1) ;
(2) если векторы попарно ортогональны, то . - Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
- Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, , и ; тогда
(1) ;
(2) если , то . - Вект. произв. в псевдоевкл. пр.-ве с ориент.: ().
- Векторное произведение в коорд.: . Теорема о векторном произведении.
Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, , и ; тогда
(1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
(2) и ;
(3) для любых выполнено ;
(4) если , то для любых выполнено и .
10 Алгебры
10.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
- Примеры: , , , , ; -алгебры , , , . Структурн. константы алгебры: .
- Теорема Кэли для ассоциативных алгебр с . Инъект. гомоморфизмы -алгебр: и .
Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображ.-е , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — инъективный гомоморфизм алгебр с . - Алгебра с делением: и . Примеры: , ; -алгебры с делением , и алгебра октонионов (октав) .
- Моноидная алгебра ( — моноид): ; общий вид эл.-та: (); умнож.-е в : свертка.
- Алгебра многочленов от свободных переменных: . Одночлены: . Степень. Однородные многочлены.
- Алгебра многочленов от комм. перем.: . Одночлены: (). Степень. Однор. многочлены.
- Алгебра многочленов от антикомм. перем.: .
10.2 Алгебры Ли (основные определения и примеры)
- -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетв.-т тождеству Якоби ().
- Коммутатор эл.-тов ассоциативной алгебры: . Алгебра : вект. простр.-во с операцией . Утверждение: — алгебра Ли.
- Примеры: , , трехмерн. евклид. пр.-во с ориент. относ.-но , — подалгебра алгебры Ли .
- Матричные алгебры Ли: , , , , .
- Теорема о группах матриц и матричных алгебрах Ли. Пусть , , , и ; тогда
(1) если , то , и, если , то ;
(2) если , то , а также, если , то , и, если , то . - Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .
Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; обозначим через векторное пространство над полем , получающееся
из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — гомоморфизм алгебр Ли. - Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
- Пример: пусть — открытое множество в и ; тогда — дифференцирование алгебры .