Алгебра phys 2 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 75: Строка 75:
 
<li>В коорд.: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Пример: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math> — поле форм от <math>k</math> перем.-х.
 
<li>В коорд.: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Пример: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math> — поле форм от <math>k</math> перем.-х.
 
<li>Преобр.-е координат тензорного поля при замене координат на <math>M</math>: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!\Bigl(\frac{\partial x^\tilde{i_1}}{\partial x^{k_1}}\!\circ\xi\Bigr)\ldots\Bigl(\frac{\partial x^\tilde{i_p}}{\partial x^{k_p}}\!\circ\xi\Bigr)\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_q}}{\partial x^\tilde{j_q}}\!\circ\tilde\xi\Bigr)\,T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}\!</math>.
 
<li>Преобр.-е координат тензорного поля при замене координат на <math>M</math>: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!\Bigl(\frac{\partial x^\tilde{i_1}}{\partial x^{k_1}}\!\circ\xi\Bigr)\ldots\Bigl(\frac{\partial x^\tilde{i_p}}{\partial x^{k_p}}\!\circ\xi\Bigr)\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_q}}{\partial x^\tilde{j_q}}\!\circ\tilde\xi\Bigr)\,T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}\!</math>.
<li>Производная Ли: <math>\mathcal L_vf=\mathrm df(v)</math>. Коммутатор вект. полей: <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_{[v,w]}=[\mathcal L_v,\mathcal L_w]\bigr)</math>. Единственность коммутатора. Теорема о коммутаторе.
+
<li>Произв. Ли: <math>\mathcal L_vf=\mathrm df(v)</math>. Лемма о производной Ли. Коммут.-р вект. полей: <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_{[v,w]}=[\mathcal L_v,\mathcal L_w]\bigr)</math>. Единств.-сть. Теорема о коммутаторе.
<p><u>Теорема о коммутаторе.</u> <i>Пусть <math>M</math> — многообразие и <math>n=\dim M</math>; тогда<br>(1) для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координатах векторное поле <math>[v,w]</math> на <math>M</math> по формуле <math>[v,w]=\!\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>[\,,]</math> удовлетворяет определению коммутатора;<br>(2) <math>\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>, и отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm C^\infty\!(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр Ли.</i></p></ul>
+
<p><u>Лемма о производной Ли.</u> <i>Пусть <math>M</math> — многообразие; тогда отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm C^\infty\!(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный линейный оператор.</i></p>
 +
<p><u>Теорема о коммутаторе.</u> <i>Пусть <math>M</math> — многообразие и <math>n=\dim M</math>; тогда<br>(1) для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координатах векторное поле <math>[v,w]</math> на <math>M</math> по формуле <math>[v,w]=\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>[\,,]</math> удовлетворяет определению коммутатора;<br>(2) <math>\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>, и отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm C^\infty\!(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр Ли.</i></p></ul>
  
 
<h5>16.2&nbsp; Римановы и псевдоримановы многообразия (основные определения и примеры)</h5>
 
<h5>16.2&nbsp; Римановы и псевдоримановы многообразия (основные определения и примеры)</h5>
Строка 84: Строка 85:
 
<li>Градиент функции: <math>\mathrm{grad}\,f=\sharp\,\mathrm df</math>. В координ.: <math>(\mathrm{grad}\,f)^i=\sum_{j=1}^ng^{i,j}\,\partial_jf=\partial^if</math>. Длина кривой (<math>\forall\,\tau\in(\alpha;\beta)\;\bigl(g(\dot\gamma(\tau),\dot\gamma(\tau))\ge0\bigr)</math>): <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma(\tau),\dot\gamma(\tau))}\,\mathrm d\tau</math>.
 
<li>Градиент функции: <math>\mathrm{grad}\,f=\sharp\,\mathrm df</math>. В координ.: <math>(\mathrm{grad}\,f)^i=\sum_{j=1}^ng^{i,j}\,\partial_jf=\partial^if</math>. Длина кривой (<math>\forall\,\tau\in(\alpha;\beta)\;\bigl(g(\dot\gamma(\tau),\dot\gamma(\tau))\ge0\bigr)</math>): <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma(\tau),\dot\gamma(\tau))}\,\mathrm d\tau</math>.
 
<li>Ковариантная произв. вект. полей: <math>\nabla\in\mathrm{Bi}(\mathrm{Vect}(M),\mathrm{Vect}(M))</math> и <math>\forall\,v,w\in\mathrm{Vect}(M),\,f\in\mathrm C^\infty\!(M)\;\bigl(\nabla_{fv}w=f\,\nabla_vw\,\land\,\nabla_v(fw)=(\mathcal L_vf)\,w+f\,\nabla_vw\bigr)</math>.
 
<li>Ковариантная произв. вект. полей: <math>\nabla\in\mathrm{Bi}(\mathrm{Vect}(M),\mathrm{Vect}(M))</math> и <math>\forall\,v,w\in\mathrm{Vect}(M),\,f\in\mathrm C^\infty\!(M)\;\bigl(\nabla_{fv}w=f\,\nabla_vw\,\land\,\nabla_v(fw)=(\mathcal L_vf)\,w+f\,\nabla_vw\bigr)</math>.
<li><u>Теорема о ковариантной производной.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math> и в каждой системе координат из атласа на <math>M</math> заданы функции <math>\,\Gamma^i_{j,k}</math>,<br>где <math>i,j,k\in\{1,\ldots,n\}</math>, преобразующиеся при замене координ. по формуле <math>\Gamma^\tilde i_{\tilde j,\tilde k}=\sum_{r=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^r}\!\circ\xi\Bigr)\biggl(\sum_{1\le s,t\le n}\!\!\Bigl(\frac{\partial x^s}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\Bigl(\frac{\partial x^t}{\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\,\Gamma^r_{s,t}+\Bigr(\frac{\partial^2x^r}{\partial x^\tilde j\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\!\biggr)</math>;<br>тогда для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координ. векторное поле <math>\nabla_vw</math> на <math>M</math> по формуле <math>\nabla_vw=\!\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i+\sum_{k=1}^n\Gamma^i_{j,k}v^jw^k\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>\nabla</math> удовлетворяет определ.-ю ковариантной производной.</i>
+
<li><u>Теорема о ковариантной производной.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math> и в каждой системе координат из атласа на <math>M</math> заданы функции <math>\,\Gamma^i_{j,k}</math>,<br>где <math>i,j,k\in\{1,\ldots,n\}</math>, преобразующиеся при замене координ. по формуле <math>\Gamma^\tilde i_{\tilde j,\tilde k}=\sum_{r=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^r}\!\circ\xi\Bigr)\biggl(\sum_{1\le s,t\le n}\!\!\Bigl(\frac{\partial x^s}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\Bigl(\frac{\partial x^t}{\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\,\Gamma^r_{s,t}+\Bigr(\frac{\partial^2x^r}{\partial x^\tilde j\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\!\biggr)</math>;<br>тогда для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координ. векторное поле <math>\nabla_vw</math> на <math>M</math> по формуле <math>\nabla_vw=\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i+\sum_{k=1}^n\Gamma^i_{j,k}v^jw^k\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>\nabla</math> удовлетворяет определ.-ю ковариантной производной.</i>
<li>Символы Кристоффеля на псевдориман. многообр. (<math>g</math> — метрич. тензор): <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{l,j}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты.
+
<li>Символы Кристоффеля на псевдориман. многообр. (<math>g</math> — метрич. тензор): <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты.
<p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>ковариантную производную <math>\nabla</math> на <math>M</math> (это связность Леви-Чивиты);<br>(2) для связности Леви-Чивиты вып.-но <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math>;<br>(3) условия на ковариантную производную и свойства из пункта (2) однозначно определяют связность Леви-Чивиты (без доказательства).</i></p>
+
<p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>ковариантную производную <math>\nabla</math> на <math>M</math> (это связность Леви-Чивиты);<br>(2) для связности Леви-Чивиты вып.-но <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math>;<br>(3) условия из определения ковариантной производной и свойства из пункта (2) однозначно определяют связность Леви-Чивиты (без доказательства).</i></p>
<li>Геодезическая — экстремальная кривая функционала длины (<math>\gamma(\alpha)=m_0</math>, <math>\gamma(\beta)=m_1</math> и <math>g(\dot\gamma,\dot\gamma)=1</math>): <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\ddot\gamma^i+\!\!\!\sum_{1\le j,k\le n}\!\!\bigl(\Gamma^i_{j,k}\!\circ\gamma\bigr)\,\dot\gamma^j\dot\gamma^k=0\Bigr)</math>.</ul>
+
<li>Геодезическая — экстремальная кривая функционала длины (<math>\gamma(\alpha)=m_0</math>, <math>\gamma(\beta)=m_1</math> и <math>g(\dot\gamma,\dot\gamma)=1</math>): <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\ddot\gamma^i+\!\!\sum_{1\le j,k\le n}\!\!\bigl(\Gamma^i_{j,k}\!\circ\gamma\bigr)\,\dot\gamma^j\dot\gamma^k=0\Bigr)</math>.</ul>
  
 
<h5>16.3&nbsp; Дифференциальные операции на многообразиях</h5>
 
<h5>16.3&nbsp; Дифференциальные операции на многообразиях</h5>

Версия 20:00, 29 сентября 2018

Подробный план второй половины третьего семестра курса алгебры

In the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of Einstein's
theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about
them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct
mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:
"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while
the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).
Статья «Tensor» в англоязычной Википедии

14   Тензорные произведения векторных пространств

14.1  Определения и конструкции, связанные с тензорами
  • Тензорное произведение пространств: , где и — подпространство полилинеаризации.
  • Разложимый тензор: . Ранг тензора : — минимум среди всех таких , что равен сумме разл. тензоров.
  • Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
    и отображение — полилинейный оператор.
  • Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
    существ. единств. такой , что
    (и, значит, отображение — изоморфизм векторных пространств).
  • Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
    пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
    пространства , а также, если , то .
  • Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
  • Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
    и .
  • Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    (1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
    (2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2  Тензоры типа и тензорная алгебра
  • Пространство тензоров типа над : . Примеры: , , , , .
  • Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
  • Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) — изоморфизм векторных пространств;
    (2) — изоморфизм векторных пространств;
    (3) — изоморфизм вект. простр.-в.
  • Тензор типа в координатах: . Примеры: , , .
  • Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
  • Преобразование при замене базиса: . Примеры: , .
  • Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
  • Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
    — базис алгебры , и для любых его элементов и выполнено
    , а также — алгебра многочленов от своб. перем.-х.
14.3  Операции над тензорами
  • Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
  • Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
  • Свертка по -й и -й позициям: .
  • Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.

    Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых , и выполнено , , и ;
    (2) для любых и выполнено и .

  • Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
    (1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
    (2) под действием канонического изоморфизма тензор переходит в форму ;
    (3) для любых выполнено .
  • Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
  • Опускание индекса с -й позиции в коорд. (применение операции выражается в располож.-и индексов): .
  • Подъем индекса с -й позиции в коорд. (применение операции выражается в расположении индексов): .

15   Симметрические и внешние степени векторных пространств

15.1  Определения и конструкции, связанные с симметричными и антисимметричными тензорами
  • Симметрическая степень: . Внешняя степень: .
  • Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
    и ; обозначим через канонический изоморфизм ; тогда
    (1) (напоминание: и );
    (2) и (далее пространства и отождествляются);
    (3) и (далее пространства и отождествляются).
  • Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.

    Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) и , а также и (и, значит, — проектор на и — проектор на ).

  • Симметрич. и внешнее произв.-е векторов: и . Пример: .
  • Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
    (1) и отображение — симметричный полилинейный оператор;
    (2) и отображение — антисимметричный полилинейный оператор.
  • Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
    (1) для любых существует единственный такой , что ;
    (2) для любых существует единственный такой , что .
  • Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
    и ; тогда
    (1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (3) и .
  • Симметрич. и внешняя степени лин. оператора (): и .
15.2  Симметрическая алгебра и внешняя алгебра
  • Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
  • Симметриз.-я и альтерн.-е в коорд.: и .
  • Симметрическое и внешнее произв. в коорд.: и .
  • Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
    , и , , ; тогда
    (1) и ;
    (2) и ;
    (3) и ;
    (4) и ;
    (5) и .
  • Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
  • Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
  • Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
    (1) — базис алгебры , и для любых его элементов и
    выполнено , где числа суть числа , упорядоченные по неубыванию;
    (2) — базис алгебры , и для любых его элементов и
    выполнено , где суть , упоряд. по неубыванию;
    (3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3  Операции над внешними формами
  • Теорема о внешнем произведении антисимметричных полилинейных форм. Пусть — поле, , — векторное пространство над полем ,
    , и ; тогда
    (1) если , то для любых выполнено ;
    (2) для любых выполнено .
  • Внутреннее произведение с вектором : .
  • Векторное произведение в коорд.-х: .
  • Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: . Пример: .
  • Пример: . Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении.

    Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
    (1) для любых и выполнено ;
    (2) для любых и выполнено , где
    образуют дополнительный набор к (то есть и ); в частности, .

    Теорема об операторе Ходжа и внешнем произведении. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
    (1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
    (2) для любых выполнено , где (в координатах );
    (3) для любых выполнено ;
    (4) если , то для любых выполнено .

16   Многообразия (часть 2)

16.1  Векторные поля, ковекторные поля, тензорные поля
  • Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
  • Пр.-ва векторн. полей и ковект. полей (-форм): и .
  • Умножение вект. полей и -форм на функции. Действие -форм на вект. поля. Локальные вект. поля и -формы . Утверждение: .
  • Векторные поля и -формы в коорд.: и . Преобраз.-я при замене коорд.: и .
  • Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
  • В коорд.: . Пример: — поле форм от перем.-х.
  • Преобр.-е координат тензорного поля при замене координат на : .
  • Произв. Ли: . Лемма о производной Ли. Коммут.-р вект. полей: . Единств.-сть. Теорема о коммутаторе.

    Лемма о производной Ли. Пусть — многообразие; тогда отображение — инъективный линейный оператор.

    Теорема о коммутаторе. Пусть — многообразие и ; тогда
    (1) для любых , определяя в координатах векторное поле на по формуле , имеем
    следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению коммутатора;
    (2) — алгебра Ли относительно операции , и отображение — инъективный гомоморфизм алгебр Ли.

16.2  Римановы и псевдоримановы многообразия (основные определения и примеры)
  • Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
  • Риманово многообразие — многообразие с полож. определ. метрическим тензором. Примеры: , подмногообразия в , пространство Лобачевского .
  • Псевдориманово многообр. сигнат. — многообр. с метрич. тензором сигнат. . Бемоль: . Диез: .
  • Градиент функции: . В координ.: . Длина кривой (): .
  • Ковариантная произв. вект. полей: и .
  • Теорема о ковариантной производной. Пусть — многообразие, и в каждой системе координат из атласа на заданы функции ,
    где , преобразующиеся при замене координ. по формуле ;
    тогда для любых , определяя в координ. векторное поле на по формуле , имеем
    следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определ.-ю ковариантной производной.
  • Символы Кристоффеля на псевдориман. многообр. ( — метрич. тензор): . Теорема о связности Леви-Чивиты.

    Теорема о связности Леви-Чивиты. Пусть — псевдориманово многообразие; тогда
    (1) символы Кристоффеля на преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют
    ковариантную производную на (это связность Леви-Чивиты);
    (2) для связности Леви-Чивиты вып.-но и ;
    (3) условия из определения ковариантной производной и свойства из пункта (2) однозначно определяют связность Леви-Чивиты (без доказательства).

  • Геодезическая — экстремальная кривая функционала длины (, и ): .
16.3  Дифференциальные операции на многообразиях
  • Пр.-во дифференц. -форм: . В коорд.: .
  • Алгебра дифференциальных форм: — ассоциат. суперкоммут. -алгебра с . Теорема о внешнем дифференциале (эскиз доказ.-ва).

    Теорема о внешнем дифференциале. Пусть — многообразие; тогда существует единственный такой линейный оператор , что
    (то есть — супердифференцирование алгебры ), а также
    для любых выполнено и (напоминание: ).

  • Дифференциал в коорд.-х: . Утверждение: . Замкнутая форма: . Точная форма: .
  • Ориентация многообразия — такой выбор ориентаций всех пространств , где , что .
  • Атлас : ; тогда .
  • Канонич. форма объема на псевдориман. многообр.-и с ориентацией. Оператор Ходжа на псевдориман. многообр.-и с ориентацией: .
  • Ротор и дивергенция векторного поля: и . Лапласиан функции: .
  • Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .