Алгебра phys 1 апрель–май — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 30: | Строка 30: | ||
<li>Нахождение координат вектора при помощи невырожд. формы: <math>v^e=\sigma^{e,e}\!\cdot((\flat_\sigma v)_e)^\mathtt T\!=\sigma^{e,e}\!\cdot\!\biggl(\begin{smallmatrix}\sigma(v,e_1)\\\vdots\\\sigma(v,e_n)\end{smallmatrix}\biggr)</math>. Теорема о базисах и невырожденных формах. | <li>Нахождение координат вектора при помощи невырожд. формы: <math>v^e=\sigma^{e,e}\!\cdot((\flat_\sigma v)_e)^\mathtt T\!=\sigma^{e,e}\!\cdot\!\biggl(\begin{smallmatrix}\sigma(v,e_1)\\\vdots\\\sigma(v,e_n)\end{smallmatrix}\biggr)</math>. Теорема о базисах и невырожденных формах. | ||
<p><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math> и<br><math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}\!\in\mathrm{GL}(m,K){}</math>, если и только если <math>(v_1,\ldots,v_m)\in\mathrm{OB}(U){}</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i></p> | <p><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math> и<br><math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}\!\in\mathrm{GL}(m,K){}</math>, если и только если <math>(v_1,\ldots,v_m)\in\mathrm{OB}(U){}</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i></p> | ||
− | <li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. | + | <li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональн. дополнение: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>. |
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) если <math>\dim V<\infty</math> и форма <math>\sigma</math> невырождена, то <math>\dim U+\dim U^\perp\!=\dim V</math>, а также <math>U=U^{\perp\perp}</math> и <math>\,U^\perp\!+W^\perp\!=(U\cap W)^\perp</math>;<br>(3) <math>\mathrm{Ker}\bigl(\flat_{\sigma|_{U\times U}}\!\bigr)\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math>форма <math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>).</i></ul> | <li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) если <math>\dim V<\infty</math> и форма <math>\sigma</math> невырождена, то <math>\dim U+\dim U^\perp\!=\dim V</math>, а также <math>U=U^{\perp\perp}</math> и <math>\,U^\perp\!+W^\perp\!=(U\cap W)^\perp</math>;<br>(3) <math>\mathrm{Ker}\bigl(\flat_{\sigma|_{U\times U}}\!\bigr)\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math>форма <math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>).</i></ul> | ||
Строка 42: | Строка 42: | ||
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>. | <li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>. | ||
<li><u>Лемма об определителе матрицы Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, <math>m\in\mathbb N</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>U=\langle v_1,\ldots,v_{m-1}\rangle{}</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>\hat v_m=v_m-\mathrm{proj}_U(v_m){}</math>; тогда <math>\,\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}\!=\det\sigma_{(v_1,\ldots,v_{m-1}),(v_1,\ldots,v_{m-1})}\!\cdot\sigma(\hat v_m,\hat v_m){}</math>.</i> | <li><u>Лемма об определителе матрицы Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, <math>m\in\mathbb N</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>U=\langle v_1,\ldots,v_{m-1}\rangle{}</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>\hat v_m=v_m-\mathrm{proj}_U(v_m){}</math>; тогда <math>\,\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}\!=\det\sigma_{(v_1,\ldots,v_{m-1}),(v_1,\ldots,v_{m-1})}\!\cdot\sigma(\hat v_m,\hat v_m){}</math>.</i> | ||
− | <li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>cm_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>cm_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\sigma(\hat e_i,\hat e_i)=\frac{cm_i}{cm_{i-1}}</math>,<br>а также <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i> | + | <li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>cm_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n-1\}{}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>cm_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\sigma(\hat e_i,\hat e_i)=\frac{cm_i}{cm_{i-1}}</math>,<br>а также <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i> |
<li>Ортогонал. системы функций: <math>\cos(nx)</math> и <math>\sin(nx)</math> (<math>n\in\mathbb N</math>), <math>\mathrm e^{nx\,\mathrm i}</math> (<math>n\in\mathbb Z</math>), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul> | <li>Ортогонал. системы функций: <math>\cos(nx)</math> и <math>\sin(nx)</math> (<math>n\in\mathbb N</math>), <math>\mathrm e^{nx\,\mathrm i}</math> (<math>n\in\mathbb Z</math>), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul> | ||
Строка 85: | Строка 85: | ||
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>. | <ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>. | ||
<li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>. | <li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>. | ||
− | <li>Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>. | + | <li>Теорема Кэли для ассоциативных алгебр с <math>1</math>. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>. |
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p> | <p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p> | ||
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>. | <li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>. |
Версия 23:00, 3 апреля 2018
Подробный план второй половины второго семестра курса алгебры
8 Векторные пространства с ¯-билинейной формой
8.1 ¯-Билинейные формы
- Пространство билинейных форм: . Примеры: (, ), (, ).
- Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
- Матрица Грама формы : . Обобщенная матрица Грама: . Теорема о матрице Грама.
Теорема о матрице Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , и ; тогда
(1) для любых выполнено ;
(2) для любых и выполнено . - Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
- Пр.-ва ¯-симметричных форм и матриц: и .
- Пр.-ва ¯-антисимм. форм и матриц: и .
- Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
- Изоморфизмы между пр.-вами с формой: и .
8.2 ¯-Квадратичные формы
- Пространство ¯-квадратичных форм: . Утверждение: .
- ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
- Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем следующие факты:
— симметричная билинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем
следующие факты: — полуторалинейная форма (то есть ), а также ;
(2) отображения и — взаимно обратные изоморфизмы векторных пространств. - Гиперповерхность второго порядка в пространстве : множество вида , где , и .
- Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
8.3 Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
- Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
- Случай : невырождена — биекция. Ранг формы : . Утверждение: .
- Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
- Пример: или , и ; тогда топологич. невырождена (без док.-ва).
- Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
- Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.
Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , и
; тогда , если и только если и форма невырождена. - Ортогональные векторы (): . Ортогональн. дополнение: .
- Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
(1) , , и ;
(2) если и форма невырождена, то , а также и ;
(3) и, если , то форма невырождена;
(4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
8.4 Диагонализация ¯-симметричных ¯-билинейных форм
- Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
- Ортонормированный базис ( или ): — диагональная матрица с на диагонали.
- Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
тогда существует такой вектор , что (то есть существует неизотропный вектор). - Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.
Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
(1) в пространстве существует ортогональный базис (то есть );
(2) если или , то в пространстве существует ортонормированный базис (то есть ).Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
(1) существует такая матрица , что — диагональная матрица;
(2) если или , то сущ.-т такая матрица , что — диаг. матрица с на диагонали. - Утверждение: пусть , , форма невырождена и ; тогда .
- Лемма об определителе матрицы Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , , ,
, форма невырождена и ; тогда . - Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
и ; для любых обозначим через пространство и обозначим через -й угловой минор
матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
обозначим через вектор . Тогда для любых выполнено и ,
а также (это индуктивная формула для нахождения векторов ). - Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).
9 Геометрия в векторных пространствах над или
9.1 Положительно и отрицательно определенные формы и сигнатура формы
- Мн.-ва положительно и отрицательно определенных форм: и .
- Мн.-ва полож. и отриц. опред. матриц: и .
- Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
(1) если и , то и, если , то форма невырождена и ;
(2) если , то , если и только если ;
(3) если и , то , если и только если . - Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
для любых обозначим через -й угловой минор матрицы ; тогда
(1) , если и только если ;
(2) , если и только если . - Индексы инерции формы : и .
- Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
(1) (и, значит, число не зависит от базиса );
(2) (и, значит, число не зависит от базиса );
(3) . - Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
и ; тогда , если и только если , и . - Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
9.2 Предгильбертовы пространства
- Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
- Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
- Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
- Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
(1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
(2) для любых выполнено (это неравенство треугольника);
(3) если , то для любых и выполнено и (это равенство Парсеваля). - Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.
Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
(1) для любых выполнено ;
(2) если , то для любых выполнено ;
(3) если , то для любых и выполнено и (это нерав.-во Бесселя). - Метод наименьших квадратов: замена системы , где , и , на систему .
- Угол между векторами и между вектором и подпр.-вом (, , , ): и .
- Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
9.3 Ориентация, объем, векторное произведение
- Отн.-е одинак. ориентированности ( — кон.-мерн. в. пр. над , ): . Утверждение: .
- Ориентация пр.-ва — выбор эл.-та мн.-ва . Знак набора векторов: . Теорема о знаке базиса и формах объема.
Теорема о знаке базиса и формах объема. Пусть — векторное простр.-во с ориентацией и ; тогда для любых выполнено
, а также множество , равное , не зависит от выбора базиса . - Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (): ; если , то .
- Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.
Лемма об объеме и матрице Грама. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
(1) ;
(2) если векторы попарно ортогональны, то . - Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
- Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, ,
и ; тогда
(1) ;
(2) если , то . - Вект. произв. в псевдоевкл. пр.-ве с ориент.: ().
- Векторное произведение в коорд.: . Теорема о векторном произведении.
Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, , и ; тогда
(1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
(2) и ;
(3) для любых выполнено ;
(4) если , то для любых выполнено и .
10 Алгебры
10.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
- Примеры: , , , , ; -алгебры , , , . Структурн. константы алгебры: .
- Теорема Кэли для ассоциативных алгебр с . Инъект. гомоморфизмы -алгебр: и .
Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображ.-е , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — инъективный гомоморфизм алгебр с . - Алгебра с делением: и . Примеры: , ; -алгебры с делением , и алгебра октонионов (октав) .
- Моноидная алгебра ( — моноид): ; общий вид эл.-та: (); умнож.-е в : свертка.
- Алгебра многочленов от свободн. переменных: . Одночлены: . Степень. Однородные многочлены.
- Алгебра многочленов от комм. перем.: . Одночлены: (). Степень. Однор. многочлены.
- Алгебра многочленов от антикомм. перем.: .
10.2 Алгебры Ли (основные определения и примеры)
- -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетв.-т тождеству Якоби ().
- Коммутатор элементов ассоциативной алгебры: . Алгебра : вект. простр.-во с операцией . Утверждение: — алгебра Ли.
- Примеры: , , трехмерное евклид. пр.-во с ориент. относ.-но , — подалгебра алгебры Ли .
- Матричные алгебры Ли: , , , , .
- Теорема о группах матриц и матричных алгебрах Ли. Пусть , , , и ; тогда
(1) если , то , и, если , то ;
(2) если , то , а также, если , то , и, если , то . - Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .
Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; обозначим через векторное пространство над полем , получающееся
из алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
(2) отображение — гомоморфизм алгебр Ли. - Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
- Пример: пусть — открытое подмнож.-во в и ; тогда — дифференцирование алгебры .