Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
<ul><li>Пространство билинейных форм: <math>\mathrm{Bi}(V)</math>. Примеры: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>V=K^n</math>, <math>s\in\mathrm{Mat}(n,K)</math>), <math>(f,g)\mapsto\!\int_\alpha^\beta\!\!sfg</math> (<math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math>, <math>s\in V</math>).
 
<ul><li>Пространство билинейных форм: <math>\mathrm{Bi}(V)</math>. Примеры: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>V=K^n</math>, <math>s\in\mathrm{Mat}(n,K)</math>), <math>(f,g)\mapsto\!\int_\alpha^\beta\!\!sfg</math> (<math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math>, <math>s\in V</math>).
 
<li>Поля с инволюцией. Пространство <math>\overline V</math>: <math>c\overline\cdot v=\overline c\,v</math>. Простр.-во ¯-билинейных форм (полуторалинейных форм, если <math>\overline{\phantom c}\ne\mathrm{id}_K</math>): <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
 
<li>Поля с инволюцией. Пространство <math>\overline V</math>: <math>c\overline\cdot v=\overline c\,v</math>. Простр.-во ¯-билинейных форм (полуторалинейных форм, если <math>\overline{\phantom c}\ne\mathrm{id}_K</math>): <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
<li>Матрица Грама: <math>(\sigma_{(v_1,\ldots,v_m),(w_1,\ldots,w_m)})_{j_1,j_2}\!=\sigma(v_{j_1}\!,w_{j_2}){}</math>. Утверждение: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>. Лемма о матрице Грама.
+
<li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. Обобщенная матрица Грама: <math>(\sigma_{(v_1,\ldots,v_m),(w_1,\ldots,w_m)})_{j_1,j_2}\!=\sigma(v_{j_1}\!,w_{j_2}){}</math>. Теорема о матрице Грама.
<p><u>Лемма о матрице Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>e\in\mathrm{OB}(V)</math>,<br><math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m,w_1,\ldots,w_m\in V</math>; тогда <math>\sigma_{(v_1,\ldots,v_m),(w_1,\ldots,w_m)}\!=\bigl(v_1^e\;\ldots\;v_m^e\bigr)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\bigl(w_1^e\;\ldots\;w_m^e\bigr)}{}</math>.</i></p>
+
<p><u>Теорема о матрице Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>;<br>(2) для любых <math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m,w_1,\ldots,w_m\in V</math> выполнено <math>\sigma_{(v_1,\ldots,v_m),(w_1,\ldots,w_m)}\!=\bigl(v_1^e\;\ldots\;v_m^e\bigr)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\bigl(w_1^e\;\ldots\;w_m^e\bigr)}{}</math>.</i></p>
 
<li>Изоморфизм вект. пр.-в <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Изоморфизм вект. пр.-в <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Пр.-ва ¯-симметричных форм и матриц: <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
 
<li>Пр.-ва ¯-симметричных форм и матриц: <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
Строка 15: Строка 15:
  
 
<h5>8.2&nbsp; ¯-Квадратичные формы</h5>
 
<h5>8.2&nbsp; ¯-Квадратичные формы</h5>
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\,\overline c\,\kappa(v)</math>.
+
<ul><li>Пространство ¯-квадратичных форм: <math>\overline{\mathrm{Quad}}(V)=\{\kappa\in\mathrm{Func}(V,K)\mid\exists\,\sigma\in\overline{\mathrm{Bi}}(V)\,\,\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}{}</math>. Утверждение: <math>\kappa(c\,v)=c\,\overline c\,\kappa(v)</math>.
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> (если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>).
+
<li>¯-Квадратичная форма <math>\kappa{}</math> в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующие факты:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующие факты:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>, имеем<br>следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\overline{\mathrm{Bi}}(V)&\to\overline{\mathrm{Quad}}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>, имеем<br>следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>), а также <math>\forall\,v\in V\;\bigl(\mathrm{pol}_\kappa(v,v)=\kappa(v)\bigr)</math>;<br>(2) отображения <math>\biggl(\!\begin{align}\overline{\mathrm{Bi}}(V)&\to\overline{\mathrm{Quad}}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
Строка 69: Строка 69:
 
<h5>9.3&nbsp; Ориентация, объем, векторное произведение</h5>
 
<h5>9.3&nbsp; Ориентация, объем, векторное произведение</h5>
 
<ul><li>Отн.-е одинак. ориентированности (<math>V</math> — кон.-мерн. в. пр. над <math>\mathbb R</math>, <math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>e\overset{\scriptscriptstyle\mathrm{or}}\sim\tilde e\,\Leftrightarrow\,\det\mathrm c_e^\tilde e\!>0</math>. Утверждение: <math>V\ne\{0\}\,\Rightarrow\,|\mathrm{OB}(V)/{\overset{\scriptscriptstyle\mathrm{or}}\sim}|=2</math>.
 
<ul><li>Отн.-е одинак. ориентированности (<math>V</math> — кон.-мерн. в. пр. над <math>\mathbb R</math>, <math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>e\overset{\scriptscriptstyle\mathrm{or}}\sim\tilde e\,\Leftrightarrow\,\det\mathrm c_e^\tilde e\!>0</math>. Утверждение: <math>V\ne\{0\}\,\Rightarrow\,|\mathrm{OB}(V)/{\overset{\scriptscriptstyle\mathrm{or}}\sim}|=2</math>.
<li>Ориентация кон.-мерн. вект. пр.-ва <math>V</math> над <math>\mathbb R</math> — выбор элемента <math>\mathrm{OB}_{>0}(V)</math> множества <math>\mathrm{OB}(V)/\overset{\scriptscriptstyle\mathrm{or}}\sim</math>. Знак набора векторов: <math>\mathrm{sign}(v_1,\ldots,v_n)\in\{1,-1,0\}</math>.
+
<li>Ориентация пр.-ва <math>V</math> — выбор эл.-та <math>\mathrm{OB}_{>0}(V)</math> мн.-ва <math>\mathrm{OB}(V)/\overset{\scriptscriptstyle\mathrm{or}}\sim</math>. Знак набора векторов: <math>\mathrm{sign}(v_1,\ldots,v_n)</math>. Теорема о знаке базиса и формах объема.
<li>Теорема о знаке базиса и формах объема. Мн.-во положит. форм объема в вект. пр.-ве с ориентацией: <math>\mathrm{VF}_{>0}(V)=\mathbb R_{>0}\,\mathrm{sign}(e)\,\mathrm{vol}^e</math>, где <math>e\in\mathrm{OB}(V)</math>.
+
<p><u>Теорема о знаке базиса и формах объема.</u> <i>Пусть <math>V</math> — векторное простр.-во с ориентацией и <math>e\in\mathrm{OB}(V)</math>; тогда для любых <math>\tilde e\in\mathrm{OB}(V)</math> выполнено<br><math>\mathrm{sign}(\tilde e)\,\mathrm{vol}^\tilde e\!=|\det\mathrm c_e^\tilde e|\,\mathrm{sign}(e)\,\mathrm{vol}^e</math>, а также множество <math>\mathrm{VF}_{>0}(V)</math>, равное <math>\,\mathbb R_{>0}\,\mathrm{sign}(e)\,\mathrm{vol}^e{}</math>, не зависит от выбора базиса <math>e</math>.</i></p>
<p><u>Теорема о знаке базиса и формах объема.</u> <i>Пусть <math>V</math> — вект. простр.-во с ориентацией и <math>e,\tilde e\in\mathrm{OB}(V)</math>; тогда <math>\mathrm{sign}(\tilde e)\,\mathrm{vol}^\tilde e\!=|\det\mathrm c_e^\tilde e|\,\mathrm{sign}(e)\,\mathrm{vol}^e</math>.</i></p>
+
 
<li>Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>; если <math>e\in\mathrm{OnOB}_{>0}(V)</math>, то <math>\mathrm{vol}=\mathrm{vol}^e</math>.
 
<li>Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (<math>e\in\mathrm{OB}(V)</math>): <math>\mathrm{vol}=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e</math>; если <math>e\in\mathrm{OnOB}_{>0}(V)</math>, то <math>\mathrm{vol}=\mathrm{vol}^e</math>.
 
<li>Корректность опр.-я объема. Объем в коорд.: <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_n^{j_n}</math>. Лемма об объеме и матрице Грама.
 
<li>Корректность опр.-я объема. Объем в коорд.: <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_n^{j_n}</math>. Лемма об объеме и матрице Грама.
 
<p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}{}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}</math>.</i></p>
 
<p><u>Лемма об объеме и матрице Грама.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>v_1,\ldots,v_n\in V</math>; тогда<br>(1) <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|\det\sigma_{(v_1,\ldots,v_n),(v_1,\ldots,v_n)}|}{}</math>;<br>(2) если векторы <math>v_1,\ldots,v_n</math> попарно ортогональны, то <math>\mathrm{vol}(v_1,\ldots,v_n)=\mathrm{sign}(v_1,\ldots,v_n)\sqrt{|(v_1\!\mid\!v_1)|}\cdot\ldots\cdot\!\sqrt{|(v_n\!\mid\!v_n)|}</math>.</i></p>
<li>Неотрицат. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>.
+
<li>Неотриц. объем в евкл. пр.-ве: <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}(v_1,\ldots,v_m)|</math> в <math>\langle v_1,\ldots,v_m\rangle</math>, если <math>v_1,\ldots,v_m</math> независимы; иначе <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=0</math>.
 
<li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>,  
 
<li><u>Теорема о неотрицательном объеме в евклидовом пространстве.</u> <i>Пусть <math>V</math> — евклидово пространство, <math>\sigma=(\,\mid\,)</math>,  
 
<math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m\in V</math>; тогда<br>(1) <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=\!\sqrt{\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}}</math>;<br>(2) если <math>m\ge1</math>, то <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}|_{m-1}(v_1,\ldots,v_{m-1})\cdot\|v_m\!-\mathrm{proj}_{\langle v_1,\ldots,v_{m-1}\rangle}(v_m)\|</math>.</i>
 
<math>m\in\mathbb N_0</math> и <math>v_1,\ldots,v_m\in V</math>; тогда<br>(1) <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=\!\sqrt{\det\sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}}</math>;<br>(2) если <math>m\ge1</math>, то <math>|\mathrm{vol}|_m(v_1,\ldots,v_m)=|\mathrm{vol}|_{m-1}(v_1,\ldots,v_{m-1})\cdot\|v_m\!-\mathrm{proj}_{\langle v_1,\ldots,v_{m-1}\rangle}(v_m)\|</math>.</i>
<li>Вект. произв.в псевдоевкл. пр.-ве с ориент.: <math>v_1\times\ldots\times v_{n-1}=\sharp\,\bigl(v_n\!\mapsto\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math> (<math>\Leftrightarrow\,\forall\,v_n\in V\;\bigl((v_1\times\ldots\times v_{n-1}\!\mid\!v_n)=\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math>).
+
<li>Вект. произв. в псевдоевкл. пр.-ве с ориент.: <math>v_1\times\ldots\times v_{n-1}=\sharp\,\bigl(v_n\!\mapsto\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math> (<math>\Leftrightarrow\,\forall\,v_n\in V\;\bigl((v_1\times\ldots\times v_{n-1}\!\mid\!v_n)=\mathrm{vol}(v_1,\ldots,v_n)\bigr)</math>).
<li>Векторное произведение в коорд.: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_{n-1}\le n}\!\!\!\varepsilon^{\;\;\;\;\;\;\;\;\;\;\;i}_{j_1,\ldots,j_{n-1}}\,v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>. Теорема о векторном произведении.
+
<li>Векторное произведение в коорд.: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\sigma^{i,j_n}\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}{}</math>. Теорема о векторном произведении.
<p><u>Теорема о векторном произведении.</u> <i>Пусть <math>V</math> — евклидово пространство с ориентацией, <math>n=\dim V\ge1</math> и <math>v_1,\ldots,v_{n-1}\in V</math>; тогда<br>(1) след. утв.-я эквивалентны: (у1) векторы <math>v_1,\ldots,v_{n-1}</math> независимы, (у2) <math>v_1\times\ldots\times v_{n-1}\ne0</math> и (у3) <math>(v_1,\ldots,v_{n-1},v_1\times\ldots\times v_{n-1})\in\mathrm{OB}_{>0}(V)</math>;<br>(2) <math>v_1\times\ldots\times v_{n-1}\in\langle v_1,\ldots,v_{n-1}\rangle^\perp</math> и <math>\|v_1\times\ldots\times v_{n-1}\|=|\mathrm{vol}|_{n-1}(v_1,\ldots,v_{n-1})</math>.</i></p></ul>
+
<p><u>Теорема о векторном произведении.</u> <i>Пусть <math>V</math> — евклидово пространство с ориентацией, <math>n=\dim V\ge1</math> и <math>v_1,\ldots,v_{n-1}\in V</math>; тогда<br>(1) след. утв.-я эквивалентны: (у1) векторы <math>v_1,\ldots,v_{n-1}</math> независимы, (у2) <math>v_1\times\ldots\times v_{n-1}\ne0</math> и (у3) <math>(v_1,\ldots,v_{n-1},v_1\times\ldots\times v_{n-1})\in\mathrm{OB}_{>0}(V)</math>;<br>(2) <math>v_1\times\ldots\times v_{n-1}\in\langle v_1,\ldots,v_{n-1}\rangle^\perp</math> и <math>\|v_1\times\ldots\times v_{n-1}\|=|\mathrm{vol}|_{n-1}(v_1,\ldots,v_{n-1})</math>;<br>(3) для любых <math>w_1,\ldots,w_{n-1}\in V{}</math> выполнено <math>(v_1\times\ldots\times v_{n-1}\!\mid\!w_1\times\ldots\times w_{n-1})=\det\sigma_{(v_1,\ldots,v_{n-1}),(w_1,\ldots,w_{n-1})}{}</math>;<br>(4) если <math>n=3</math>, то для любых <math>u,v,w\in V</math> выполнено <math>(u\times v)\times w=(u\!\mid\!w)\,v-(v\!\mid\!w)\,u\,{}</math> и <math>\,(u\times v)\times w+(v\times w)\times u+(w\times u)\times v=0{}</math>.</i></p></ul>
  
 
<h3>10&nbsp;&nbsp; Алгебры</h3>
 
<h3>10&nbsp;&nbsp; Алгебры</h3>
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<h5>10.1&nbsp; Определения и конструкции, связанные с алгебрами</h5>
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
 
<ul><li><math>K</math>-Алгебра — вект. пространство над <math>K</math> с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из <math>K</math>.
<li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурные константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>.
+
<li>Примеры: <math>\mathrm{Func}(X,K)</math>, <math>K[x]</math>, <math>K(x)</math>, <math>\mathrm{Mat}(n,K)</math>, <math>\mathrm{End}(V)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb H</math>, <math>\mathrm C^0\!(X,\mathbb R)</math>, <math>\mathrm C^\infty\!(M,\mathbb R)</math>. Структурн. константы алгебры: <math>m^i_{j_1,j_2}\!\!=(e_{j_1}e_{j_2})^i</math>.
 
<li>Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>.
 
<li>Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы <math>\mathbb R</math>-алгебр: <math>\biggl(\!\begin{align}\mathbb C&\to\mathrm{Mat}(2,\mathbb R)\,\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math>.
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображение <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p>
+
<p><u>Теорема Кэли для ассоциативных алгебр с 1.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство<br>над полем <math>K</math>, получающееся из алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображ.-е <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор (то есть <math>\mathrm{lm}_a\!\in\mathrm{End}({}_K\!A)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i></p>
 
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>.
 
<li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math> и <math>A\ne\{0\}</math>. Примеры: <math>K</math>, <math>K(x)</math>; <math>\mathbb R</math>-алгебры с делением <math>\mathbb C</math>, <math>\mathbb H</math> и алгебра октонионов (октав) <math>\mathbb O</math>.
<li>Моноидная алгебра (<math>M</math> — моноид): <math>K[M]=\mathrm{FinFunc}(M,K)</math>; общий вид эл.-та: <math>\sum_{m\in M}p_mm</math> (<math>|\{m\in M\mid p_m\ne0\}|<\infty</math>); умножение в <math>K[M]</math>: свертка.
+
<li>Моноидная алгебра (<math>M</math> — моноид): <math>K[M]=\mathrm{FinFunc}(M,K)</math>; общий вид эл.-та: <math>\sum_{m\in M}p_mm</math> (<math>|\{m\in M\mid p_m\ne0\}|<\infty</math>); умнож.-е в <math>K[M]</math>: свертка.
<li>Алгебра многочленов от свободных переменных: <math>K_\otimes[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)]</math>. Одночлены: <math>x_{j_1}\!\otimes\ldots\otimes x_{j_k}</math>. Степень. Однородные многочлены.
+
<li>Алгебра многочленов от свободн. переменных: <math>K_\otimes[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)]</math>. Одночлены: <math>x_{j_1}\!\otimes\ldots\otimes x_{j_k}</math>. Степень. Однородные многочлены.
<li>Алгебра многочленов от коммут. перем.: <math>K[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)^\mathtt{ab}]</math>. Одночлены: <math>x_{j_1}\!\cdot\ldots\cdot x_{j_k}</math> (<math>j_1\le\ldots\le j_k</math>). Степень. Однор. многочлены.
+
<li>Алгебра многочленов от комм. перем.: <math>K[x_1,\ldots,x_n]=K[\mathrm W(x_1,\ldots,x_n)^\mathtt{ab}]</math>. Одночлены: <math>x_{j_1}\!\cdot\ldots\cdot x_{j_k}</math> (<math>j_1\le\ldots\le j_k</math>). Степень. Однор. многочлены.
<li>Алгебра многочленов от антикоммут. перем.: <math>K_\wedge[x_1,\ldots,x_n]=K_\otimes[x_1,\ldots,x_n]/\bigl(\{x_i\otimes x_j+x_j\otimes x_i\mid i,j\in\{1,\ldots,n\}\}\cup\{x_1\otimes x_1,\ldots,x_n\otimes x_n\}\bigr)</math>.</ul>
+
<li>Алгебра многочленов от антикомм. перем.: <math>K_\wedge[x_1,\ldots,x_n]=K_\otimes[x_1,\ldots,x_n]/\bigl(\{x_i\otimes x_j+x_j\otimes x_i\mid i,j\in\{1,\ldots,n\}\}\cup\{x_1\otimes x_1,\ldots,x_n\otimes x_n\}\bigr)</math>.</ul>
  
 
<h5>10.2&nbsp; Алгебры Ли (основные определения и примеры)</h5>
 
<h5>10.2&nbsp; Алгебры Ли (основные определения и примеры)</h5>
<ul><li><math>K</math>-Алгебра Ли — <math>K</math>-алгебра, умножение в которой антисимметрично (<math>[a,a]=0</math>) и удовлетворяет тождеству Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>).
+
<ul><li><math>K</math>-Алгебра Ли — <math>K</math>-алгебра, умножение в которой антисимметрично (<math>[a,a]=0</math>) и удовлетв.-т тождеству Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>).
<li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: вект. простр.-во <math>{}_K\!A</math> с операцией <math>[\,,]</math>. Утверждение: <i>алгебра <math>A^-</math> — алгебра Ли</i>.
+
<li>Коммутатор элементов ассоциативной алгебры: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: вект. простр.-во <math>{}_K\!A</math> с операцией <math>[\,,]</math>. Утверждение: <i><math>A^-</math> — алгебра Ли</i>.
<li>Примеры: <math>\mathfrak{gl}(V)=\mathrm{End}(V)^-</math>, <math>\mathfrak{sl}(V)=\{a\in\mathfrak{gl}(V)\mid\mathrm{tr}\,a=0\}</math>, <math>\mathbb R^3</math> с векторным умножением — алгебра Ли, так как <math>v\times w=\frac12[v,w]</math> в алгебре Ли <math>\mathbb H^-</math>.
+
<li>Примеры: <math>\mathfrak{gl}(V)=\mathrm{End}(V)^-</math>, <math>\mathfrak{sl}(V)=\{a\in\mathfrak{gl}(V)\mid\mathrm{tr}\,a=0\}</math>, трехмерное евклидово пр.-во с вект. умножением, <math>\mathbb H_\mathrm{vect}</math> — подалгебра алгебры Ли <math>\mathbb H^-</math>.
 
<li>Матричные алгебры Ли: <math>\mathfrak{gl}(n,K)</math>, <math>\mathfrak{sl}(n,K)</math>, <math>\mathfrak o(n)=\mathfrak{so}(n)=\{a\in\mathfrak{gl}(n,\mathbb R)\mid a^\mathtt T\!=-a\}</math>, <math>\mathfrak u(n)=\{a\in\mathfrak{gl}(n,\mathbb C)\mid\overline a^\mathtt T\!=-a\}</math>,  
 
<li>Матричные алгебры Ли: <math>\mathfrak{gl}(n,K)</math>, <math>\mathfrak{sl}(n,K)</math>, <math>\mathfrak o(n)=\mathfrak{so}(n)=\{a\in\mathfrak{gl}(n,\mathbb R)\mid a^\mathtt T\!=-a\}</math>, <math>\mathfrak u(n)=\{a\in\mathfrak{gl}(n,\mathbb C)\mid\overline a^\mathtt T\!=-a\}</math>,  
 
<math>\mathfrak{su}(n)=\mathfrak{sl}(n,\mathbb C)\cap\mathfrak u(n)</math>.
 
<math>\mathfrak{su}(n)=\mathfrak{sl}(n,\mathbb C)\cap\mathfrak u(n)</math>.
<li>Утверждение: <i><math>\mathrm e^{\mathfrak{gl}(n,K)}\!\subseteq\mathrm{GL}(n,K)</math> и <math>\mathrm e^{\mathfrak{sl}(n,K)}\!\subseteq\mathrm{SL}(n,K)</math> (здесь <math>K=\mathbb R</math> или <math>K=\mathbb C</math>), а также <math>\mathrm e^{\mathfrak o(n)}\!=\mathrm e^{\mathfrak{so}(n)}\!\subseteq\mathrm{SO}(n)</math>, <math>\mathrm e^{\mathfrak u(n)}\!\subseteq\mathrm U(n)</math>, <math>\mathrm e^{\mathfrak{su}(n)}\!\subseteq\mathrm{SU}(n)</math></i>.
+
<li>Утверждение: <i>пусть <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),\mathrm{Mat}(n,\mathbb R)){}</math> и <math>\gamma(0)=\mathrm{id}_n</math>; тогда <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SL}(n,\mathbb R)\,\Rightarrow\,\gamma'(0)\in\mathfrak{sl}(n,\mathbb R){}</math> и <math>\,\mathrm{Im}\,\gamma\subseteq\mathrm{SO}(n)\,\Rightarrow\,\gamma'(0)\in\mathfrak{so}(n){}</math></i>.
 
<li>Теорема Кэли для алгебр Ли. Изоморфизмы <math>\mathbb R</math>-алгебр Ли: <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{so}(3)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto\!\biggl(\begin{smallmatrix}0&-\delta&\gamma\\\delta&0&-\beta\\-\gamma&\beta&0\end{smallmatrix}\biggr)\end{align}\!\Biggr)</math>, <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathbb H_\mathrm{vect}\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}(\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)\end{align}\!\Biggr)</math> и <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{su}(2)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}\Bigl(\begin{smallmatrix}\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math>.
 
<li>Теорема Кэли для алгебр Ли. Изоморфизмы <math>\mathbb R</math>-алгебр Ли: <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{so}(3)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto\!\biggl(\begin{smallmatrix}0&-\delta&\gamma\\\delta&0&-\beta\\-\gamma&\beta&0\end{smallmatrix}\biggr)\end{align}\!\Biggr)</math>, <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathbb H_\mathrm{vect}\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}(\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)\end{align}\!\Biggr)</math> и <math>\Biggl(\!\begin{align}\mathbb R^3\!&\to\mathfrak{su}(2)\\\biggl(\begin{smallmatrix}\beta\\\gamma\\\delta\end{smallmatrix}\biggr)\!&\mapsto{\textstyle\frac12}\Bigl(\begin{smallmatrix}\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math>.
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<p><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; обозначим через <math>{}_K\mathfrak g</math> векторное пространство над полем <math>K</math>, получающееся<br>из алгебры <math>\mathfrak g</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_a</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_a</math> — линейный оператор (то есть <math>\mathrm{ad}_a\!\in\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_a\end{align}\!\biggr)</math> — гомоморфизм алгебр Ли.</i></p>
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
 
<li>Алгебра дифференцирований <math>K</math>-алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>.
<li>Пример: пусть <math>M</math> — открытое подмножество в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>
+
<li>Пример: пусть <math>M</math> — открытое подмнож.-во в <math>\mathbb R^n</math> и <math>v\in\mathrm C^\infty\!(M,\mathbb R^n)</math>; тогда <math>\Biggl(\begin{align}\mathrm C^\infty\!(M,\mathbb R)&\to\mathrm C^\infty\!(M,\mathbb R)\\f&\mapsto\sum_{i=1}^nv^i\frac{\partial f}{\partial x^i}\end{align}\Biggr)</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M,\mathbb R)</math>.</ul>

Версия 21:00, 24 марта 2018

Подробный план второй половины второго семестра курса алгебры

8   Векторные пространства с ¯-билинейной формой

8.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама формы : . Обобщенная матрица Грама: . Теорема о матрице Грама.

    Теорема о матрице Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , и ; тогда
    (1) для любых выполнено ;
    (2) для любых и выполнено .

  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
8.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
8.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , и
    ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
8.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональная матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ.-т такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Лемма об определителе матрицы Грама. Пусть — поле с инволюцией, — вект. простр.-во над полем , , , ,
    , форма невырождена и ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогонал. системы функций: и (), (), многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

9   Геометрия в векторных пространствах над или

9.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. Пусть или , — вект. пр.-во над и ; тогда
    (1) если и , то и, если , то форма невырождена и ;
    (2) если , то , если и только если ;
    (3) если и , то , если и только если .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Исследование кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
9.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Расст. между подмн.-вами: . Теорема о расстояниях и проектировании.

    Теорема о расстояниях и проектировании. Пусть — предгильбертово пространство и ; тогда
    (1) для любых выполнено ;
    (2) если , то для любых выполнено ;
    (3) если , то для любых и выполнено и (это нерав.-во Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .
9.3  Ориентация, объем, векторное произведение
  • Отн.-е одинак. ориентированности ( — кон.-мерн. в. пр. над , ): . Утверждение: .
  • Ориентация пр.-ва — выбор эл.-та мн.-ва . Знак набора векторов: . Теорема о знаке базиса и формах объема.

    Теорема о знаке базиса и формах объема. Пусть — векторное простр.-во с ориентацией и ; тогда для любых выполнено
    , а также множество , равное , не зависит от выбора базиса .

  • Каноническая форма объема в псевдоевкл. пр.-ве с ориентацией (): ; если , то .
  • Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.

    Лемма об объеме и матрице Грама. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
    (1) ;
    (2) если векторы попарно ортогональны, то .

  • Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, , и ; тогда
    (1) ;
    (2) если , то .
  • Вект. произв. в псевдоевкл. пр.-ве с ориент.: ().
  • Векторное произведение в коорд.: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и ;
    (3) для любых выполнено ;
    (4) если , то для любых выполнено и .

10   Алгебры

10.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
  • Примеры: , , , , ; -алгебры , , , . Структурн. константы алгебры: .
  • Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы -алгебр: и .

    Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
    над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображ.-е , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — инъективный гомоморфизм алгебр с .

  • Алгебра с делением: и . Примеры: , ; -алгебры с делением , и алгебра октонионов (октав) .
  • Моноидная алгебра ( — моноид): ; общий вид эл.-та: (); умнож.-е в : свертка.
  • Алгебра многочленов от свободн. переменных: . Одночлены: . Степень. Однородные многочлены.
  • Алгебра многочленов от комм. перем.: . Одночлены: (). Степень. Однор. многочлены.
  • Алгебра многочленов от антикомм. перем.: .
10.2  Алгебры Ли (основные определения и примеры)
  • -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетв.-т тождеству Якоби ().
  • Коммутатор элементов ассоциативной алгебры: . Алгебра : вект. простр.-во с операцией . Утверждение: — алгебра Ли.
  • Примеры: , , трехмерное евклидово пр.-во с вект. умножением, — подалгебра алгебры Ли .
  • Матричные алгебры Ли: , , , , .
  • Утверждение: пусть и ; тогда и .
  • Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .

    Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; обозначим через векторное пространство над полем , получающееся
    из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — гомоморфизм алгебр Ли.

  • Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
  • Пример: пусть — открытое подмнож.-во в и ; тогда — дифференцирование алгебры .