Алгебра phys 2 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | <h2> | + | <h2>Подробный план второй половины третьего семестра курса алгебры</h2> |
<table cellpadding="6" cellspacing="0"> | <table cellpadding="6" cellspacing="0"> | ||
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>In the 20th century, the subject came to be known as <i>tensor analysis</i>, and achieved broader acceptance with the introduction of Einstein's<br>theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about<br>them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct<br>mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:<br>"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while<br>the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).</td></tr><tr align="right"><td>[https://en.wikipedia.org/wiki/Tensor<i>Статья «Tensor» в англоязычной Википедии</i>]</td></tr></table></td></tr></table> | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>In the 20th century, the subject came to be known as <i>tensor analysis</i>, and achieved broader acceptance with the introduction of Einstein's<br>theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about<br>them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct<br>mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:<br>"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while<br>the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).</td></tr><tr align="right"><td>[https://en.wikipedia.org/wiki/Tensor<i>Статья «Tensor» в англоязычной Википедии</i>]</td></tr></table></td></tr></table> | ||
− | <h3> | + | <h3>14 Тензорные произведения векторных пространств</h3> |
− | <h5> | + | <h5>14.1 Определения и конструкции, связанные с тензорами</h5> |
<ul><li>Тензорное произведение пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации. | <ul><li>Тензорное произведение пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации. | ||
<li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> есть миним. среди всех таких <math>m</math>, что <math>T</math> равен сумме <math>m</math> разл. тензоров. | <li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> есть миним. среди всех таких <math>m</math>, что <math>T</math> равен сумме <math>m</math> разл. тензоров. | ||
Строка 15: | Строка 15: | ||
<li><u>Вторая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>V,W,Y</math> — векторные пространства над полем <math>K</math>; тогда<br>(1) <math>\biggl(\!\begin{align}Y\otimes V^*\!&\to\mathrm{Hom}(V,Y)\\y\otimes\lambda&\mapsto\bigl(v\mapsto\lambda(v)\,y\bigr)\!\end{align}\!\biggr)</math> — инъективный линейный оператор и, если <math>\dim V,\dim Y<\infty</math>, то это отображ.-е — изоморфизм вект. простр.-в;<br>(2) <math>\biggl(\!\begin{align}V^*\!\otimes W^*\!&\to(V\otimes W)^*\\\lambda\otimes\mu&\mapsto\bigl(v\otimes w\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> — инъект. лин. оператор и, если <math>\dim V,\dim W<\infty</math>, то это отображ.-е — изоморфизм вект. простр.-в.</i></ul> | <li><u>Вторая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>V,W,Y</math> — векторные пространства над полем <math>K</math>; тогда<br>(1) <math>\biggl(\!\begin{align}Y\otimes V^*\!&\to\mathrm{Hom}(V,Y)\\y\otimes\lambda&\mapsto\bigl(v\mapsto\lambda(v)\,y\bigr)\!\end{align}\!\biggr)</math> — инъективный линейный оператор и, если <math>\dim V,\dim Y<\infty</math>, то это отображ.-е — изоморфизм вект. простр.-в;<br>(2) <math>\biggl(\!\begin{align}V^*\!\otimes W^*\!&\to(V\otimes W)^*\\\lambda\otimes\mu&\mapsto\bigl(v\otimes w\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> — инъект. лин. оператор и, если <math>\dim V,\dim W<\infty</math>, то это отображ.-е — изоморфизм вект. простр.-в.</i></ul> | ||
− | <h5> | + | <h5>14.2 Тензоры типа <math>(p,q)</math> и тензорная алгебра</h5> |
<ul><li>Пространство тензоров типа <math>(p,q)</math> над <math>V</math>: <math>\mathcal T^p_{\;q}V=V^{\otimes p}\!\otimes(V^*)^{\otimes q}</math>. Примеры: <math>\mathcal T^0_{\,\,0}V=K</math>, <math>\mathcal T^1V=V</math>, <math>\mathcal T_{\,1}V=V^*</math>, <math>\mathcal T^1_{\,\,1}V\cong\mathrm{End}(V)</math>, <math>\mathcal T_{\,2}V\cong\mathrm{Bi}(V)</math>. | <ul><li>Пространство тензоров типа <math>(p,q)</math> над <math>V</math>: <math>\mathcal T^p_{\;q}V=V^{\otimes p}\!\otimes(V^*)^{\otimes q}</math>. Примеры: <math>\mathcal T^0_{\,\,0}V=K</math>, <math>\mathcal T^1V=V</math>, <math>\mathcal T_{\,1}V=V^*</math>, <math>\mathcal T^1_{\,\,1}V\cong\mathrm{End}(V)</math>, <math>\mathcal T_{\,2}V\cong\mathrm{Bi}(V)</math>. | ||
<li>Примеры: <math>\mathcal T^1_{\,\,2}V\cong\mathrm{Bi}(V,V,V)</math> — простр.-во структур алгебры на <math>V</math>, <math>\mathcal T^2_{\,\,1}V\cong\mathrm{Hom}(V,V\otimes V)</math> — простр.-во структур коалгебры на <math>V</math>, <math>\mathcal T_{\,q}V=\mathcal T^qV^*</math>. | <li>Примеры: <math>\mathcal T^1_{\,\,2}V\cong\mathrm{Bi}(V,V,V)</math> — простр.-во структур алгебры на <math>V</math>, <math>\mathcal T^2_{\,\,1}V\cong\mathrm{Hom}(V,V\otimes V)</math> — простр.-во структур коалгебры на <math>V</math>, <math>\mathcal T_{\,q}V=\mathcal T^qV^*</math>. | ||
Строка 25: | Строка 25: | ||
<li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых его элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>\,e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> выполнено<br><math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math>, а также <math>\,\mathcal T(V)\cong K_\otimes[x_1,\ldots,x_n]</math> — алгебра многочленов от своб. перем.-х.</i></ul> | <li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых его элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>\,e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> выполнено<br><math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math>, а также <math>\,\mathcal T(V)\cong K_\otimes[x_1,\ldots,x_n]</math> — алгебра многочленов от своб. перем.-х.</i></ul> | ||
− | <h5> | + | <h5>14.3 Операции над тензорами</h5> |
<ul><li>Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: <math>\bigl(T\otimes T'\bigr)^{i_1,\ldots,i_p\;\;\;\;\;\;\;i_1',\ldots,i_{p'}'}_{\;\;\;\;\;\;\;\;j_1,\ldots,j_q\;\;\;\;\;\;\;j_1',\ldots,j_{q'}'}\!\!=T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\!\cdot{T'}^{i_1',\ldots,i_{p'}'}_{\!j_1',\ldots,j_{q'}'}\!</math>. Кронекерово пр.-е матриц. | <ul><li>Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: <math>\bigl(T\otimes T'\bigr)^{i_1,\ldots,i_p\;\;\;\;\;\;\;i_1',\ldots,i_{p'}'}_{\;\;\;\;\;\;\;\;j_1,\ldots,j_q\;\;\;\;\;\;\;j_1',\ldots,j_{q'}'}\!\!=T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\!\cdot{T'}^{i_1',\ldots,i_{p'}'}_{\!j_1',\ldots,j_{q'}'}\!</math>. Кронекерово пр.-е матриц. | ||
<li>Перестановка компонент: <math>\biggl(\!\begin{align}\mathrm{pat}_u\colon\mathcal T^kV&\to\mathcal T^kV\\v_1\otimes\ldots\otimes v_k&\mapsto v_{u^{-1}(1)}\!\otimes\ldots\otimes v_{u^{-1}(k)}\end{align}\!\biggr)</math>. Действие <math>\mathrm{pat}</math> группы <math>\mathrm S_k</math>. Перест.-ка в коорд.-х: <math>\bigl(\mathrm{pat}_u(T)\bigr)^{i_1,\ldots,i_k}\!=T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | <li>Перестановка компонент: <math>\biggl(\!\begin{align}\mathrm{pat}_u\colon\mathcal T^kV&\to\mathcal T^kV\\v_1\otimes\ldots\otimes v_k&\mapsto v_{u^{-1}(1)}\!\otimes\ldots\otimes v_{u^{-1}(k)}\end{align}\!\biggr)</math>. Действие <math>\mathrm{pat}</math> группы <math>\mathrm S_k</math>. Перест.-ка в коорд.-х: <math>\bigl(\mathrm{pat}_u(T)\bigr)^{i_1,\ldots,i_k}\!=T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | ||
Строка 36: | Строка 36: | ||
<li>Подъем индекса с <math>d</math>-й позиции в коорд. (применение операции выражается в расположении индексов): <math>T^{i_1,\ldots,i_p\;\;\;\;\;\;\;\;\;\;\,i}_{\;\;\;\;\;\;\;\;\,j_1,\ldots,j_{d-1}\,\,j_{d+1},\ldots,j_q}\!=\sum_{j_d=1}^n\sigma^{i,j_d}\,T^{i_1,\ldots,i_p}_{j_1,\ldots,j_d,\ldots,j_q}\!</math>.</ul> | <li>Подъем индекса с <math>d</math>-й позиции в коорд. (применение операции выражается в расположении индексов): <math>T^{i_1,\ldots,i_p\;\;\;\;\;\;\;\;\;\;\,i}_{\;\;\;\;\;\;\;\;\,j_1,\ldots,j_{d-1}\,\,j_{d+1},\ldots,j_q}\!=\sum_{j_d=1}^n\sigma^{i,j_d}\,T^{i_1,\ldots,i_p}_{j_1,\ldots,j_d,\ldots,j_q}\!</math>.</ul> | ||
− | <h3> | + | <h3>15 Симметрические и внешние степени векторных пространств</h3> |
− | <h5> | + | <h5>15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами</h5> |
<ul><li>Симметрическая степень: <math>\mathsf S^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=T\bigr)\}</math>. Внешняя степень: <math>\mathsf\Lambda^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=\mathrm{sgn}(u)\,T\bigr)\}</math>. | <ul><li>Симметрическая степень: <math>\mathsf S^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=T\bigr)\}</math>. Внешняя степень: <math>\mathsf\Lambda^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=\mathrm{sgn}(u)\,T\bigr)\}</math>. | ||
<li><u>Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — вект. пр.-во над <math>K</math>,<br><math>k\in\mathbb N_0</math> и <math>\dim V<\infty</math>; обозначим через <math>\iota</math> канонический изоморфизм <math>\biggl(\!\begin{align}\mathcal T^kV^*\!&\to\mathrm{Multi}_kV\\\lambda_1\otimes\ldots\otimes\lambda_k&\mapsto\bigl((v_1,\ldots,v_k)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_k(v_k)\bigr)\!\end{align}\!\biggr)</math>; тогда<br>(1) <math>\forall\,u\in\mathrm S_k\,\bigl(\iota\circ\mathrm{pat}_u=\mathrm{paf}_u\!\circ\iota\bigr)</math> (напоминание: <math>\mathrm{pat}_u(\lambda_1\otimes\ldots\otimes\lambda_k)=\lambda_{u^{-1}(1)}\!\otimes\ldots\otimes\lambda_{u^{-1}(k)}</math> и <math>(\mathrm{paf}_u(\omega))(v_1,\ldots,v_k)=\omega(v_{u(1)},\ldots,v_{u(k)})</math>);<br>(2) <math>\iota(\mathsf S^kV^*)=\mathrm{SMulti}_kV</math> и <math>\,\mathsf S^kV^*\!\cong\mathrm{SMulti}_kV</math> (далее пространства <math>\,\mathsf S^kV^*</math> и <math>\,\mathrm{SMulti}_kV</math> отождествляются);<br>(3) <math>\iota(\mathsf\Lambda^kV^*)=\mathrm{AMulti}_kV</math> и <math>\,\mathsf\Lambda^kV^*\!\cong\mathrm{AMulti}_kV</math> (далее пространства <math>\,\mathsf\Lambda^kV^*</math> и <math>\,\mathrm{AMulti}_kV</math> отождествляются).</i> | <li><u>Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — вект. пр.-во над <math>K</math>,<br><math>k\in\mathbb N_0</math> и <math>\dim V<\infty</math>; обозначим через <math>\iota</math> канонический изоморфизм <math>\biggl(\!\begin{align}\mathcal T^kV^*\!&\to\mathrm{Multi}_kV\\\lambda_1\otimes\ldots\otimes\lambda_k&\mapsto\bigl((v_1,\ldots,v_k)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_k(v_k)\bigr)\!\end{align}\!\biggr)</math>; тогда<br>(1) <math>\forall\,u\in\mathrm S_k\,\bigl(\iota\circ\mathrm{pat}_u=\mathrm{paf}_u\!\circ\iota\bigr)</math> (напоминание: <math>\mathrm{pat}_u(\lambda_1\otimes\ldots\otimes\lambda_k)=\lambda_{u^{-1}(1)}\!\otimes\ldots\otimes\lambda_{u^{-1}(k)}</math> и <math>(\mathrm{paf}_u(\omega))(v_1,\ldots,v_k)=\omega(v_{u(1)},\ldots,v_{u(k)})</math>);<br>(2) <math>\iota(\mathsf S^kV^*)=\mathrm{SMulti}_kV</math> и <math>\,\mathsf S^kV^*\!\cong\mathrm{SMulti}_kV</math> (далее пространства <math>\,\mathsf S^kV^*</math> и <math>\,\mathrm{SMulti}_kV</math> отождествляются);<br>(3) <math>\iota(\mathsf\Lambda^kV^*)=\mathrm{AMulti}_kV</math> и <math>\,\mathsf\Lambda^kV^*\!\cong\mathrm{AMulti}_kV</math> (далее пространства <math>\,\mathsf\Lambda^kV^*</math> и <math>\,\mathrm{AMulti}_kV</math> отождествляются).</i> | ||
Строка 48: | Строка 48: | ||
<li>Симметрич. и внешняя степени лин. оператора (<math>a\in\mathrm{Hom}(V,Y)</math>): <math>a^{\cdot k}(v_1\cdot\ldots\cdot v_k)=a(v_1)\cdot\ldots\cdot a(v_k)</math> и <math>a^{\wedge k}(v_1\wedge\ldots\wedge v_k)=a(v_1)\wedge\ldots\wedge a(v_k)</math>.</ul> | <li>Симметрич. и внешняя степени лин. оператора (<math>a\in\mathrm{Hom}(V,Y)</math>): <math>a^{\cdot k}(v_1\cdot\ldots\cdot v_k)=a(v_1)\cdot\ldots\cdot a(v_k)</math> и <math>a^{\wedge k}(v_1\wedge\ldots\wedge v_k)=a(v_1)\wedge\ldots\wedge a(v_k)</math>.</ul> | ||
− | <h5> | + | <h5>15.2 Симметрическая алгебра и внешняя алгебра</h5> |
<ul><li>Симметрическое произв.-е и внешнее произв.-е тензоров (<math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>): <math>T\cdot T'=\mathrm{sym}_{k+k'}(T\otimes T')</math> и <math>T\wedge T'=\frac{(k+k')!}{k!\,k'!}\,\mathrm{alt}_{k+k'}(T\otimes T')</math>. | <ul><li>Симметрическое произв.-е и внешнее произв.-е тензоров (<math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>): <math>T\cdot T'=\mathrm{sym}_{k+k'}(T\otimes T')</math> и <math>T\wedge T'=\frac{(k+k')!}{k!\,k'!}\,\mathrm{alt}_{k+k'}(T\otimes T')</math>. | ||
<li>Симметриз.-я и альтерн.-е в коорд.: <math>T^{(i_1,\ldots,i_k)}\!=\bigl(\mathrm{sym}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}T^{i_{u(1)},\ldots,i_{u(k)}}</math> и <math>T^{[i_1,\ldots,i_k]}\!=\bigl(\mathrm{alt}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | <li>Симметриз.-я и альтерн.-е в коорд.: <math>T^{(i_1,\ldots,i_k)}\!=\bigl(\mathrm{sym}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}T^{i_{u(1)},\ldots,i_{u(k)}}</math> и <math>T^{[i_1,\ldots,i_k]}\!=\bigl(\mathrm{alt}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | ||
<li>Симметрическое и внешнее произв. в коорд.: <math>\bigl(T\cdot T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=T\!\phantom'^{(i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}')}</math> и <math>\bigl(T\wedge T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=\frac{(k+k')!}{k!\,k'!}\,T\!\phantom'^{[i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}']}</math>. | <li>Симметрическое и внешнее произв. в коорд.: <math>\bigl(T\cdot T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=T\!\phantom'^{(i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}')}</math> и <math>\bigl(T\wedge T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=\frac{(k+k')!}{k!\,k'!}\,T\!\phantom'^{[i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}']}</math>. | ||
− | <li><u>Теорема о симметрическом произведении и внешнем произведении тензоров.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное простр.-во над полем <math>K</math>,<br><math>k,k',k''\!\in\mathbb N_0</math>, <math>v_1,\ldots,v_k,v_1',\ldots,v_{k'}'\!\in V</math> и <math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>, <math>T''\!\in\mathcal T^{k''}\!V</math>; тогда<br>(1) <math>(v_1\otimes\ldots\otimes v_k)\cdot(v_1'\otimes\ldots\otimes v_{k'}')=v_1\cdot\ldots\cdot v_k\cdot v_1'\cdot\ldots\cdot v_{k'}'</math> и <math>(v_1\otimes\ldots\otimes v_k)\wedge(v_1'\otimes\ldots\otimes v_{k'}')=\frac1{k!\,k'!}\,v_1\wedge\ldots\wedge v_k\wedge v_1'\wedge\ldots\wedge v_{k'}'</math>;<br>(2) <math>\mathrm{sym}_k(T)\cdot T'=T\cdot\mathrm{sym}_{k'}(T')=T\cdot T'</math> и <math>\mathrm{alt}_k(T)\wedge T'=T\wedge\mathrm{alt}_{k'}(T')=T\wedge T'</math>;<br>(3) <math>(T\cdot T')\cdot T''=T\cdot(T'\cdot T'')=\mathrm{sym}_{k+k'+k''}(T\otimes T'\otimes T'')</math> и <math>(T\wedge T')\wedge T''=T\wedge(T'\wedge T'')=\frac{(k+k'+k'')!}{k!\,k'!\,k''!}\,\mathrm{alt}_{k+k'+k''}(T\otimes T'\otimes T'')</math> | + | <li><u>Теорема о симметрическом произведении и внешнем произведении тензоров.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное простр.-во над полем <math>K</math>,<br><math>k,k',k''\!\in\mathbb N_0</math>, <math>v_1,\ldots,v_k,v_1',\ldots,v_{k'}'\!\in V</math> и <math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>, <math>T''\!\in\mathcal T^{k''}\!V</math>; тогда<br>(1) <math>(v_1\otimes\ldots\otimes v_k)\cdot(v_1'\otimes\ldots\otimes v_{k'}')=v_1\cdot\ldots\cdot v_k\cdot v_1'\cdot\ldots\cdot v_{k'}'</math> и <math>(v_1\otimes\ldots\otimes v_k)\wedge(v_1'\otimes\ldots\otimes v_{k'}')=\frac1{k!\,k'!}\,v_1\wedge\ldots\wedge v_k\wedge v_1'\wedge\ldots\wedge v_{k'}'</math>;<br>(2) <math>\mathrm{sym}_k(T)\cdot T'=T\cdot\mathrm{sym}_{k'}(T')=T\cdot T'</math> и <math>\mathrm{alt}_k(T)\wedge T'=T\wedge\mathrm{alt}_{k'}(T')=T\wedge T'</math>;<br>(3) <math>(T\cdot T')\cdot T''=T\cdot(T'\cdot T'')=\mathrm{sym}_{k+k'+k''}(T\otimes T'\otimes T'')</math> и <math>(T\wedge T')\wedge T''=T\wedge(T'\wedge T'')=\frac{(k+k'+k'')!}{k!\,k'!\,k''!}\,\mathrm{alt}_{k+k'+k''}(T\otimes T'\otimes T'')</math>;<br>(4) <math>(\ldots(v_1\cdot v_2)\cdot\ldots\cdot v_{k-1})\cdot v_k=v_1\cdot\ldots\cdot v_k</math> и <math>(\ldots(v_1\wedge v_2)\wedge\ldots\wedge v_{k-1})\wedge v_k=v_1\wedge\ldots\wedge v_k</math>;<br>(5) <math>T\cdot T'=T'\cdot T</math> и <math>T\wedge T'=(-1)^{kk'}T'\wedge T</math>.</i> |
<li>Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над <math>V</math>: <math>\mathsf S(V)=\bigoplus_{k=0}^\infty\mathsf S^kV</math> — ассоциативная коммутативная <math>K</math>-алгебра с <math>1</math>. | <li>Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над <math>V</math>: <math>\mathsf S(V)=\bigoplus_{k=0}^\infty\mathsf S^kV</math> — ассоциативная коммутативная <math>K</math>-алгебра с <math>1</math>. | ||
<li>Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над <math>V</math>: <math>\mathsf\Lambda(V)=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math> — ассоциативная суперкоммутативная <math>K</math>-алгебра с <math>1</math>. | <li>Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над <math>V</math>: <math>\mathsf\Lambda(V)=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math> — ассоциативная суперкоммутативная <math>K</math>-алгебра с <math>1</math>. | ||
<li><u>Теорема о симметрической алгебре и внешней алгебре.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда<br>(1) <math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\cdot\ldots\cdot e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1\le\ldots\le i_k\}</math> — базис алгебры <math>\,\mathsf S(V)</math>, и для любых его элементов <math>e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math> и <math>\,e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}</math><br>выполнено <math>(e_{i_1}\!\cdot\ldots\cdot e_{i_k})\cdot(e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}\!)=e_{\hat i_1}\!\cdot\ldots\cdot e_{\hat i_{k+k'}}\!</math>, где числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упорядоченные по неубыванию;<br>(2) <math>\bigcup_{k=0}^n\,\{e_{i_1}\!\wedge\ldots\wedge e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1<\ldots<i_k\}</math> — базис алгебры <math>\,\mathsf\Lambda(V)</math>, и для любых его элементов <math>e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math> и <math>\,e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}</math><br>выполнено <math>(e_{i_1}\!\wedge\ldots\wedge e_{i_k})\wedge(e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}\!)=\varepsilon_{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}e_{\hat i_1}\!\wedge\ldots\wedge e_{\hat i_{k+k'}}\!</math>, где <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упоряд. по неубыванию;<br>(3) <math>\mathsf S(V)\cong K[x_1,\ldots,x_n]</math> — алгебра многочленов от коммут. перем.-х, и <math>\,\mathsf\Lambda(V)\cong K_\wedge[x_1,\ldots,x_n]</math> — алгебра многочленов от антикоммут. перем.-х.</i></ul> | <li><u>Теорема о симметрической алгебре и внешней алгебре.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда<br>(1) <math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\cdot\ldots\cdot e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1\le\ldots\le i_k\}</math> — базис алгебры <math>\,\mathsf S(V)</math>, и для любых его элементов <math>e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math> и <math>\,e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}</math><br>выполнено <math>(e_{i_1}\!\cdot\ldots\cdot e_{i_k})\cdot(e_{i_1'}\!\cdot\ldots\cdot e_{i_{k'}'}\!)=e_{\hat i_1}\!\cdot\ldots\cdot e_{\hat i_{k+k'}}\!</math>, где числа <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть числа <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упорядоченные по неубыванию;<br>(2) <math>\bigcup_{k=0}^n\,\{e_{i_1}\!\wedge\ldots\wedge e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1<\ldots<i_k\}</math> — базис алгебры <math>\,\mathsf\Lambda(V)</math>, и для любых его элементов <math>e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math> и <math>\,e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}</math><br>выполнено <math>(e_{i_1}\!\wedge\ldots\wedge e_{i_k})\wedge(e_{i_1'}\!\wedge\ldots\wedge e_{i_{k'}'}\!)=\varepsilon_{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}e_{\hat i_1}\!\wedge\ldots\wedge e_{\hat i_{k+k'}}\!</math>, где <math>\hat i_1,\ldots,\hat i_{k+k'}</math> суть <math>i_1,\ldots,i_k,i_1',\ldots,i_{k'}'</math>, упоряд. по неубыванию;<br>(3) <math>\mathsf S(V)\cong K[x_1,\ldots,x_n]</math> — алгебра многочленов от коммут. перем.-х, и <math>\,\mathsf\Lambda(V)\cong K_\wedge[x_1,\ldots,x_n]</math> — алгебра многочленов от антикоммут. перем.-х.</i></ul> | ||
− | < | + | <h5>15.3 Операции над внешними формами</h5> |
− | < | + | <ul><li><u>Теорема о внешнем произведении антисимметричных полилинейных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math>; тогда<br>(1) если <math>n=\dim V<\infty</math>, то для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>\omega=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}\!=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}</math>;<br>(2) для любых <math>w_1,\ldots,w_{k+k'}\!\in V</math> выполнено <math>(\omega\wedge\omega')(w_1,\ldots,w_{k+k'})=\!\!\!\!\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le k+k',\,1\le j_1'<\ldots<j_{k'}'\le k+k'}\!\!\!\!\!\!\!\!\varepsilon_{j_1,\ldots,j_k,j_1',\ldots,j_{k'}'}\omega(w_{j_1},\ldots,w_{j_k})\,\omega'(w_{j_1'},\ldots,w_{j_{k'}'})</math>.</i> |
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<li>Векторное произведение в коорд.-х: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_{n-1}\le n}\!\!\!\varepsilon^{\;\;\;\;\;\;\;\;\;\;\;i}_{j_1,\ldots,j_{n-1}}\,v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>. Теорема о векторном произведении. | <li>Векторное произведение в коорд.-х: <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_{n-1}\le n}\!\!\!\varepsilon^{\;\;\;\;\;\;\;\;\;\;\;i}_{j_1,\ldots,j_{n-1}}\,v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>. Теорема о векторном произведении. | ||
− | |||
<li>Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math>. Пример: <math>*\,1=\mathrm{vol}\,</math>. | <li>Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math>. Пример: <math>*\,1=\mathrm{vol}\,</math>. | ||
<li>Пример: <math>\sharp*(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=v_1\times\ldots\times v_{n-1}</math>. Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении. | <li>Пример: <math>\sharp*(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=v_1\times\ldots\times v_{n-1}</math>. Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении. | ||
Строка 73: | Строка 65: | ||
<p><u>Теорема об операторе Ходжа и внешнем произведении.</u> <i>Пусть <math>V</math> — псевдоевкл. пр.-во с ориент., <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math> выполнено <math>*\!*\omega=(-1)^{k(n-k)+q}\,\omega</math> (и, значит, <math>\biggl(\!\begin{align}\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\omega&\mapsto*\,\omega\end{align}\!\biggr)</math> — изоморфизм векторных пространств);<br>(2) для любых <math>\psi,\omega\in\mathrm{AMulti}_kV</math> выполнено <math>\psi\wedge*\,\omega=(\psi\!\mid\!\omega)\,\mathrm{vol}</math>, где <math>(\psi\!\mid\!\omega)=\frac1{k!}\,\psi(\sharp^{\wedge k}\omega)</math> (в координатах <math>(\psi\!\mid\!\omega)=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\psi_{j_1,\ldots,j_k}\omega^{j_1,\ldots,j_k}</math>);<br>(3) для любых <math>v,w\in V</math> выполнено <math>*\,(\flat\,v\wedge*\,\flat\,w)=(-1)^q\,(v\!\mid\!w)</math>;<br>(4) если <math>n=3</math>, то для любых <math>u,v,w\in V</math> выполнено <math>(u\times v)\times w=(-1)^q\,((u\!\mid\!w)\,v-(v\!\mid\!w)\,u)</math>.</i></p></ul> | <p><u>Теорема об операторе Ходжа и внешнем произведении.</u> <i>Пусть <math>V</math> — псевдоевкл. пр.-во с ориент., <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math> выполнено <math>*\!*\omega=(-1)^{k(n-k)+q}\,\omega</math> (и, значит, <math>\biggl(\!\begin{align}\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\omega&\mapsto*\,\omega\end{align}\!\biggr)</math> — изоморфизм векторных пространств);<br>(2) для любых <math>\psi,\omega\in\mathrm{AMulti}_kV</math> выполнено <math>\psi\wedge*\,\omega=(\psi\!\mid\!\omega)\,\mathrm{vol}</math>, где <math>(\psi\!\mid\!\omega)=\frac1{k!}\,\psi(\sharp^{\wedge k}\omega)</math> (в координатах <math>(\psi\!\mid\!\omega)=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\psi_{j_1,\ldots,j_k}\omega^{j_1,\ldots,j_k}</math>);<br>(3) для любых <math>v,w\in V</math> выполнено <math>*\,(\flat\,v\wedge*\,\flat\,w)=(-1)^q\,(v\!\mid\!w)</math>;<br>(4) если <math>n=3</math>, то для любых <math>u,v,w\in V</math> выполнено <math>(u\times v)\times w=(-1)^q\,((u\!\mid\!w)\,v-(v\!\mid\!w)\,u)</math>.</i></p></ul> | ||
− | <h5> | + | <h3>16 Многообразия (часть 2)</h3> |
− | <ul><li> | + | <h5>16.1 Векторные поля и ковекторные поля</h5> |
− | <li>< | + | <ul><li>Касательное и кокасательное расслоения: <math>\mathrm TM=\!\bigsqcup_{m\in M}\!\mathrm T_mM</math> и <math>\mathrm T^*M=\!\bigsqcup_{m\in M}\!\mathrm T^*_mM</math>. Структура многообр.-я на <math>\mathrm TM</math> и <math>\mathrm T^*M</math>; отобр.-е проекции на <math>M</math>: <math>\mathrm{pr}_M</math>. |
− | <li> | + | <li>Векторные поля и ковекторные поля (<math>1</math>-формы): <math>\mathrm{Vect}(M)=\{v\in\mathrm C^\infty\!(M,\mathrm TM)\mid\mathrm{pr}_M\!\circ v=\mathrm{id}_M\}</math> и <math>\Omega^1(M)=\{\lambda\in\mathrm C^\infty\!(M,\mathrm T^*M)\mid\mathrm{pr}_M\!\circ\lambda=\mathrm{id}_M\}</math>. |
− | + | <li>Пример: <math>\mathrm df\in\Omega^1(M)</math>. Сложение и умножение на функцию в <math>\mathrm{Vect}(M)</math> и <math>\Omega^1(M)</math>. Действие <math>1</math>-формы на векторное поле: <math>(\lambda(v))(m)=(\lambda(m))(v(m))</math>. | |
− | <li> | + | <li>Векторное поле и ковекторное поле в коорд.: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math> и <math>\lambda=\sum_{j=1}^n\lambda_j\,\mathrm dx^j</math>. Преобр.-я при замене: <math>v^\tilde i=\sum_{k=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^k}\!\circ\xi\Bigr)\,v^k</math> и <math>\lambda_\tilde j=\sum_{l=1}^n\Bigl(\frac{\partial x^l}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\,\lambda_l</math>. |
− | < | + | <li>Расслоение форм от <math>k</math> перем.: <math>\mathcal T_{\,k}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathrm{Multi}_k(\mathrm T_mM)</math>. Пр.-во полей форм от <math>k</math> перем.: <math>\mathrm{Tens}_k(M)=\{\omega\in\mathrm C^\infty\!(M,\mathcal T_{\,k}\mathrm TM)\mid\mathrm{pr}_M\!\circ\omega=\mathrm{id}_M\}</math>. |
− | + | <li>Тенз. произв.-е полей форм от <math>k</math> и <math>k'</math> переменных. Действие поля форм от <math>k</math> перем. на <math>k</math> вект. полей: <math>(\omega(v_1,\ldots,v_k))(m)=(\omega(m))(v_1(m),\ldots,v_k(m))</math>. | |
− | + | <li>Поле форм от <math>k</math> перем. в коорд.: <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. Преобр. при замене: <math>\omega_{\tilde j_1,\ldots,\tilde j_k}\!=\!\!\!\sum_{1\le l_1,\ldots,l_k\le n}\!\!\!\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_k}}{\partial x^\tilde{j_k}}\!\circ\tilde\xi\Bigr)\,\omega_{l_1,\ldots,l_k}</math>. | |
+ | <li>Произв.-я Ли функции вдоль вект. поля: <math>\mathcal L_v(f)=\mathrm df(v)</math>. Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: <math>[v,w]^i=\sum_{j=1}^n\bigl(v^j\,\partial_jw^i-w^j\,\partial_jv^i\bigr)</math>. | ||
+ | <p><u>Теорема об алгебре Ли векторных полей.</u> <i>Пусть <math>M</math> — многообразие; тогда<br>(1) для любых <math>v\in\mathrm{Vect}(M)</math> имеем следующий факт: <math>\mathcal L_v</math> — дифференцирование алгебры <math>\mathrm C^\infty\!(M)</math> (то есть <math>\mathcal L_v\!\in\mathrm{Der}(\mathrm C^\infty\!(M))</math>);<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(M)&\to\mathrm{Der}(\mathrm C^\infty\!(M))\\v&\mapsto\mathcal L_v\end{align}\!\biggr)</math> — инъективный линейный оператор, и его образ — подалгебра алгебры Ли <math>\,\mathrm{Der}(\mathrm C^\infty\!(M))</math>; определим<br>на векторном пространстве <math>\,\mathrm{Vect}(M)</math> бинарную операцию <math>[\,,]</math> так, чтобы этот инъективный линейный оператор стал гомоморфизмом алгебр Ли<br>(то есть <math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_{[v,w]}=[\mathcal L_v,\mathcal L_w]\bigr)</math>); тогда <math>\,\mathrm{Vect}(M)</math> — алгебра Ли относительно операции <math>[\,,]</math>.</i></p></ul> | ||
− | < | + | <h5>16.2 Тензорные поля, дифференциальные формы, ориентация многообразия</h5> |
− | + | ||
<ul><li>Расслоение тензоров типа <math>(p,q)</math>: <math>\mathcal T^p_{\;q}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathcal T^p_{\;q}(\mathrm T_mM)</math>. Пр.-во тензорн. полей типа <math>(p,q)</math>: <math>\mathrm{Tens}^p_q(M)=\{T\in\mathrm C^\infty\!(M,\mathcal T^p_{\;q}\mathrm TM)\mid\mathrm{pr}_M\!\circ T=\mathrm{id}_M\}</math>. | <ul><li>Расслоение тензоров типа <math>(p,q)</math>: <math>\mathcal T^p_{\;q}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathcal T^p_{\;q}(\mathrm T_mM)</math>. Пр.-во тензорн. полей типа <math>(p,q)</math>: <math>\mathrm{Tens}^p_q(M)=\{T\in\mathrm C^\infty\!(M,\mathcal T^p_{\;q}\mathrm TM)\mid\mathrm{pr}_M\!\circ T=\mathrm{id}_M\}</math>. | ||
<li>Тенз. поле в коорд.: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Примеры: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math>, <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. | <li>Тенз. поле в коорд.: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Примеры: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math>, <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. | ||
Строка 95: | Строка 88: | ||
<li>Атлас <math>\mathcal A_{>0}</math>: <math>\xi\in\mathcal A_{>0}\,\Leftrightarrow\;\forall\,m\in\mathrm{Dom}\,\xi\,\,\bigl(\Bigl(\frac\partial{\partial x^1}(m),\ldots,\frac\partial{\partial x^n}(m)\Bigr)\!\in\mathrm{OB}_{>0}(\mathrm T_mM)\bigr)</math>; тогда <math>\forall\,\xi,\tilde\xi\in\mathcal A_{>0},\,m\in\mathrm{Dom}\,\xi\cap\mathrm{Dom}\,\tilde\xi\;\bigl(\det\mathrm c_\xi^\tilde\xi(m)>0\bigr)</math>.</ul> | <li>Атлас <math>\mathcal A_{>0}</math>: <math>\xi\in\mathcal A_{>0}\,\Leftrightarrow\;\forall\,m\in\mathrm{Dom}\,\xi\,\,\bigl(\Bigl(\frac\partial{\partial x^1}(m),\ldots,\frac\partial{\partial x^n}(m)\Bigr)\!\in\mathrm{OB}_{>0}(\mathrm T_mM)\bigr)</math>; тогда <math>\forall\,\xi,\tilde\xi\in\mathcal A_{>0},\,m\in\mathrm{Dom}\,\xi\cap\mathrm{Dom}\,\tilde\xi\;\bigl(\det\mathrm c_\xi^\tilde\xi(m)>0\bigr)</math>.</ul> | ||
− | <h5>3 | + | <h5>16.3 Римановы и псевдоримановы многообразия (основные определения и примеры)</h5> |
<ul><li>Метрический тензор сигнатуры <math>(p,q)</math>: <math>g\in\mathrm{Tens}_2(M)</math> и для любых <math>m\in M</math> выполнено <math>g(m)</math> — невыр. симметр. билин. форма сигнатуры <math>(p,q)</math> на <math>\mathrm T_mM</math>. | <ul><li>Метрический тензор сигнатуры <math>(p,q)</math>: <math>g\in\mathrm{Tens}_2(M)</math> и для любых <math>m\in M</math> выполнено <math>g(m)</math> — невыр. симметр. билин. форма сигнатуры <math>(p,q)</math> на <math>\mathrm T_mM</math>. | ||
<li>Риманово многообразие — многообразие с положит. определ. метрическим тензором. Примеры: <math>\mathbb R^n</math>, подмногообразия в <math>\mathbb R^n</math>, простр.-во Лобачевского <math>\mathrm H^n</math>. | <li>Риманово многообразие — многообразие с положит. определ. метрическим тензором. Примеры: <math>\mathbb R^n</math>, подмногообразия в <math>\mathbb R^n</math>, простр.-во Лобачевского <math>\mathrm H^n</math>. | ||
Строка 103: | Строка 96: | ||
<li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Ковариантная произв.-я (<math>v,w\in\mathrm{Vect}(M)</math>): <math>(\nabla_vw)^i=\sum_{j=1}^nv^j\bigl(\partial_jw^i-\sum_{k=1}^n\Gamma^i_{j,k}w^k\bigr)</math>. | <li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Ковариантная произв.-я (<math>v,w\in\mathrm{Vect}(M)</math>): <math>(\nabla_vw)^i=\sum_{j=1}^nv^j\bigl(\partial_jw^i-\sum_{k=1}^n\Gamma^i_{j,k}w^k\bigr)</math>. | ||
<li>Длина кривой (<math>\forall\,\tau\in(\alpha;\beta)\;\bigl(g(\dot\gamma(\tau),\dot\gamma(\tau))>0\bigr)</math>): <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma(\tau),\dot\gamma(\tau))}\,\mathrm d\tau</math>. Условие на геодезическую кривую (с параметризацией длиной дуги): <math>\nabla_\dot\gamma\,\dot\gamma=0</math>. | <li>Длина кривой (<math>\forall\,\tau\in(\alpha;\beta)\;\bigl(g(\dot\gamma(\tau),\dot\gamma(\tau))>0\bigr)</math>): <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma(\tau),\dot\gamma(\tau))}\,\mathrm d\tau</math>. Условие на геодезическую кривую (с параметризацией длиной дуги): <math>\nabla_\dot\gamma\,\dot\gamma=0</math>. | ||
− | <li> | + | <li>Тензор Римана (кривизны): <math>\mathrm R^i_{j,k,l}=\partial_k\Gamma^i_{j,l}-\partial_l\Gamma^i_{j,k}+\sum_{t=1}^n\bigl(\Gamma^i_{k,t}\Gamma^t_{j,l}-\Gamma^i_{l,t}\Gamma^t_{j,k}\bigr)</math>. Тензор Риччи: <math>\mathrm R_{i,j}=\sum_{t=1}^n\mathrm R^t_{i,t,j}</math>. Скалярная кривизна: <math>\mathrm R=\!\!\sum_{1\le i,j\le n}\!\!g^{i,j}\,\mathrm R_{i,j}</math>.</ul> |
Версия 21:00, 15 августа 2018
Подробный план второй половины третьего семестра курса алгебры
|
14 Тензорные произведения векторных пространств
14.1 Определения и конструкции, связанные с тензорами
- Тензорное произведение пространств: , где и — подпространство полилинеаризации.
- Разложимый тензор: . Ранг тензора : есть миним. среди всех таких , что равен сумме разл. тензоров.
- Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
и отображение — полилинейный оператор. - Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
существ. единств. такой , что
(и, значит, отображение — изоморфизм векторных пространств). - Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
пространства , а также, если , то . - Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
- Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
и . - Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
(1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
(2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2 Тензоры типа и тензорная алгебра
- Пространство тензоров типа над : . Примеры: , , , , .
- Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
- Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) — изоморфизм векторных пространств;
(2) — изоморфизм векторных пространств;
(3) — изоморфизм вект. простр.-в. - Тензор типа в координатах: . Примеры: , , .
- Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
- Преобразование при замене базиса: . Примеры: , .
- Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
- Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
— базис алгебры , и для любых его элементов и выполнено
, а также — алгебра многочленов от своб. перем.-х.
14.3 Операции над тензорами
- Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
- Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
- Свертка по -й и -й позициям: .
- Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.
Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых , и выполнено , , и ;
(2) для любых и выполнено и . - Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
(1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
(2) под действием канонического изоморфизма тензор переходит в форму ;
(3) для любых выполнено . - Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
- Опускание индекса с -й позиции в коорд. (применение операции выражается в располож.-и индексов): .
- Подъем индекса с -й позиции в коорд. (применение операции выражается в расположении индексов): .
15 Симметрические и внешние степени векторных пространств
15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами
- Симметрическая степень: . Внешняя степень: .
- Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
и ; обозначим через канонический изоморфизм ; тогда
(1) (напоминание: и );
(2) и (далее пространства и отождествляются);
(3) и (далее пространства и отождествляются). - Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.
Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) для любых выполнено и для любых выполнено ;
(3) и , а также и (и, значит, — проектор на и — проектор на ). - Симметрич. и внешнее произв.-е векторов: и . Пример: .
- Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
(1) и отображение — симметричный полилинейный оператор;
(2) и отображение — антисимметричный полилинейный оператор. - Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
(1) для любых существует единственный такой , что ;
(2) для любых существует единственный такой , что . - Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
и ; тогда
(1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(3) и . - Симметрич. и внешняя степени лин. оператора (): и .
15.2 Симметрическая алгебра и внешняя алгебра
- Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
- Симметриз.-я и альтерн.-е в коорд.: и .
- Симметрическое и внешнее произв. в коорд.: и .
- Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
, и , , ; тогда
(1) и ;
(2) и ;
(3) и ;
(4) и ;
(5) и . - Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
- Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
- Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
(1) — базис алгебры , и для любых его элементов и
выполнено , где числа суть числа , упорядоченные по неубыванию;
(2) — базис алгебры , и для любых его элементов и
выполнено , где суть , упоряд. по неубыванию;
(3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3 Операции над внешними формами
- Теорема о внешнем произведении антисимметричных полилинейных форм. Пусть — поле, , — векторное пространство над полем ,
, и ; тогда
(1) если , то для любых выполнено ;
(2) для любых выполнено . - Векторное произведение в коорд.-х: . Теорема о векторном произведении.
- Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: . Пример: .
- Пример: . Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении.
Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
(1) для любых и выполнено ;
(2) для любых и выполнено , где
образуют дополнительный набор к (то есть и ); в частности, .Теорема об операторе Ходжа и внешнем произведении. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
(1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
(2) для любых выполнено , где (в координатах );
(3) для любых выполнено ;
(4) если , то для любых выполнено .
16 Многообразия (часть 2)
16.1 Векторные поля и ковекторные поля
- Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
- Векторные поля и ковекторные поля (-формы): и .
- Пример: . Сложение и умножение на функцию в и . Действие -формы на векторное поле: .
- Векторное поле и ковекторное поле в коорд.: и . Преобр.-я при замене: и .
- Расслоение форм от перем.: . Пр.-во полей форм от перем.: .
- Тенз. произв.-е полей форм от и переменных. Действие поля форм от перем. на вект. полей: .
- Поле форм от перем. в коорд.: . Преобр. при замене: .
- Произв.-я Ли функции вдоль вект. поля: . Теорема об алгебре Ли векторных полей. Коммутатор в коорд.: .
Теорема об алгебре Ли векторных полей. Пусть — многообразие; тогда
(1) для любых имеем следующий факт: — дифференцирование алгебры (то есть );
(2) отображение — инъективный линейный оператор, и его образ — подалгебра алгебры Ли ; определим
на векторном пространстве бинарную операцию так, чтобы этот инъективный линейный оператор стал гомоморфизмом алгебр Ли
(то есть ); тогда — алгебра Ли относительно операции .
16.2 Тензорные поля, дифференциальные формы, ориентация многообразия
- Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
- Тенз. поле в коорд.: . Примеры: , .
- Преобр. координат тензорного поля при замене координат на : .
- Пр.-во дифференц. -форм: . В коорд.-х: .
- Алгебра дифференциальных форм: — ассоциат. суперкоммут. -алгебра с . Теорема о внешнем дифференциале (эскиз доказ.-ва).
Теорема о внешнем дифференциале. Пусть — многообразие; тогда существует единственный такой линейный оператор , что
(то есть — супердифференцирование алгебры ), а также
для любых выполнено и (напоминание: ). - Дифференциал в коорд.-х: . Утверждение: . Замкнутая форма: . Точная форма: .
- Ориентация многообразия — такой выбор ориентаций всех пространств , где , что .
- Атлас : ; тогда .
16.3 Римановы и псевдоримановы многообразия (основные определения и примеры)
- Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
- Риманово многообразие — многообразие с положит. определ. метрическим тензором. Примеры: , подмногообразия в , простр.-во Лобачевского .
- Псевдориманово многообр. сигнат. — многообр. с метрич. тензором сигнат. . Канонич. форма объема на псевдориман. многообр. с ориентацией.
- Бемоль, диез и оператор Ходжа на псевдоримановом многообразии с ориент.: , и .
- Градиент функции: ; ротор и дивергенция вект. поля: и ; лапласиан функции: .
- Символы Кристоффеля: . Ковариантная произв.-я (): .
- Длина кривой (): . Условие на геодезическую кривую (с параметризацией длиной дуги): .
- Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .