Алгебра phys 1 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
<li>Главный идеал — идеал вида <math>(r)</math>. Пример неглавн. идеала: <math>(2)+(x)</math> в <math>\mathbb Z[x]</math>. Область главных идеалов — обл. цел.-сти, в которой все идеалы главные. | <li>Главный идеал — идеал вида <math>(r)</math>. Пример неглавн. идеала: <math>(2)+(x)</math> в <math>\mathbb Z[x]</math>. Область главных идеалов — обл. цел.-сти, в которой все идеалы главные. | ||
<li><u>Теорема о делимости и главных идеалах.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>r,s\in R</math>; тогда<br>(1) <math>s\,|\,r\,\Leftrightarrow\,(r)\subseteq(s)</math>; <math>s\,|\!\!|\!\!|\,r\,\Leftrightarrow\,(r)\subset(s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,(r)=(s)</math>; <math>r\in R^\times\Leftrightarrow\,r\overset{\scriptscriptstyle\mid}\sim1\,\Leftrightarrow\,(r)=R</math>;<br>(2) если идеал <math>(r)+(s)</math> главный, то <math>(r)+(s)=(\mathrm{gcd}(r,s))</math>, и, если идеал <math>(r)\cap(s)</math> главный, то <math>(r)\cap(s)=(\mathrm{lcm}(r,s))</math>;<br>(3) если в кольце <math>R</math> все идеалы главные, то <math>\mathrm{gcd}(r,s)</math> и <math>\mathrm{lcm}(r,s)</math> существуют, а также <math>(R/(r))^\times\!=\{s+(r)\in R/(r)\mid\mathrm{gcd}(r,s)\overset{\scriptscriptstyle\mid}\sim1\}</math>.</i> | <li><u>Теорема о делимости и главных идеалах.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>r,s\in R</math>; тогда<br>(1) <math>s\,|\,r\,\Leftrightarrow\,(r)\subseteq(s)</math>; <math>s\,|\!\!|\!\!|\,r\,\Leftrightarrow\,(r)\subset(s)</math>; <math>r\overset{\scriptscriptstyle\mid}\sim s\,\Leftrightarrow\,(r)=(s)</math>; <math>r\in R^\times\Leftrightarrow\,r\overset{\scriptscriptstyle\mid}\sim1\,\Leftrightarrow\,(r)=R</math>;<br>(2) если идеал <math>(r)+(s)</math> главный, то <math>(r)+(s)=(\mathrm{gcd}(r,s))</math>, и, если идеал <math>(r)\cap(s)</math> главный, то <math>(r)\cap(s)=(\mathrm{lcm}(r,s))</math>;<br>(3) если в кольце <math>R</math> все идеалы главные, то <math>\mathrm{gcd}(r,s)</math> и <math>\mathrm{lcm}(r,s)</math> существуют, а также <math>(R/(r))^\times\!=\{s+(r)\in R/(r)\mid\mathrm{gcd}(r,s)\overset{\scriptscriptstyle\mid}\sim1\}</math>.</i> | ||
− | <li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times | + | <li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. |
<li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если <math>R</math> — область главных идеалов, то <math>\,\mathrm{Irr}(R)=\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Prime}(R)</math> и (у2) <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область главных идеалов, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Irr}(R)</math>, (у2) <math>r\in\mathrm{Prime}(R)</math>,<br>(у3) <math>R/(r)</math> — область целостности и (у4) <math>R/(r)</math> — поле.</i></ul> | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если <math>R</math> — область главных идеалов, то <math>\,\mathrm{Irr}(R)=\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Prime}(R)</math> и (у2) <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область главных идеалов, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие утверждения эквивалентны: (у1) <math>r\in\mathrm{Irr}(R)</math>, (у2) <math>r\in\mathrm{Prime}(R)</math>,<br>(у3) <math>R/(r)</math> — область целостности и (у4) <math>R/(r)</math> — поле.</i></ul> | ||
Строка 59: | Строка 59: | ||
<ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i,j\in\{1,\ldots,n\}</math>, <math>i<j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math> (<math>i\in\{1,\ldots,n-1\}</math>). Число циклов в перестановке <math>u</math>: <math>\kappa(u)</math>. | <ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i,j\in\{1,\ldots,n\}</math>, <math>i<j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math> (<math>i\in\{1,\ldots,n-1\}</math>). Число циклов в перестановке <math>u</math>: <math>\kappa(u)</math>. | ||
<li>Множество инверсий последовательности <math>(f_1,\ldots,f_n)</math>: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. Лемма о количестве инверсий. | <li>Множество инверсий последовательности <math>(f_1,\ldots,f_n)</math>: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. Лемма о количестве инверсий. | ||
− | <p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb | + | <p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i></p> |
<li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> и <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math>; обозначим через <math>\hat{f_1},\ldots,\hat{f_n}</math> числа <math>f_1,\ldots,f_n</math>,<br>упорядоченные по неубыванию (то есть <math>\mathrm{inv}(\hat{f_1},\ldots,\hat{f_n})=\varnothing</math>); тогда<br>(1) существуют такие фундаментальные транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_l=(\hat{f_1},\ldots,\hat{f_n})</math>;<br>(2) для любых <math>l'\!\in\mathbb N_0</math> из существования таких фундаментальных транспозиций <math>u_1,\ldots,u_{l'}\!\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_{l'}\!=(\hat{f_1},\ldots,\hat{f_n})</math>,<br>следует, что <math>l\le l'</math>, а также в том случае, когда числа <math>f_1,\ldots,f_n</math> попарно различны, что <math>l\equiv l'\;(\mathrm{mod}\;2)</math>.</i> | <li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> и <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math>; обозначим через <math>\hat{f_1},\ldots,\hat{f_n}</math> числа <math>f_1,\ldots,f_n</math>,<br>упорядоченные по неубыванию (то есть <math>\mathrm{inv}(\hat{f_1},\ldots,\hat{f_n})=\varnothing</math>); тогда<br>(1) существуют такие фундаментальные транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_l=(\hat{f_1},\ldots,\hat{f_n})</math>;<br>(2) для любых <math>l'\!\in\mathbb N_0</math> из существования таких фундаментальных транспозиций <math>u_1,\ldots,u_{l'}\!\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_{l'}\!=(\hat{f_1},\ldots,\hat{f_n})</math>,<br>следует, что <math>l\le l'</math>, а также в том случае, когда числа <math>f_1,\ldots,f_n</math> попарно различны, что <math>l\equiv l'\;(\mathrm{mod}\;2)</math>.</i> | ||
<li>Знак посл.-сти <math>(f_1,\ldots,f_n)</math>: <math>\varepsilon_{f_1,\ldots,f_n}\!=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если <math>f_1,\ldots,f_n</math> попарно различны; иначе <math>\varepsilon_{f_1,\ldots,f_n}\!=0</math>. Пример: <math>(v\times w)^i=\!\!\!\sum_{1\le j,k\le3}\!\!\!\varepsilon_{i,j,k}\,v^jw^k</math>. | <li>Знак посл.-сти <math>(f_1,\ldots,f_n)</math>: <math>\varepsilon_{f_1,\ldots,f_n}\!=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если <math>f_1,\ldots,f_n</math> попарно различны; иначе <math>\varepsilon_{f_1,\ldots,f_n}\!=0</math>. Пример: <math>(v\times w)^i=\!\!\!\sum_{1\le j,k\le3}\!\!\!\varepsilon_{i,j,k}\,v^jw^k</math>. | ||
<li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\varepsilon_{u(1),\ldots,u(n)}</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}</math>; <math>|\mathrm A_n|=n!/2</math> (<math>n\ge2</math>). | <li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\varepsilon_{u(1),\ldots,u(n)}</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}</math>; <math>|\mathrm A_n|=n!/2</math> (<math>n\ge2</math>). | ||
− | <p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это сюръективный гомоморфизм групп;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p> | + | <p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп, и, если <math>n\ge2</math>, то это сюръективный гомоморфизм групп;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p> |
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i> | <li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i> | ||
<li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: <math>\mathrm S_3\cong\langle d_1,d_2\!\mid d_1^2,d_2^2,(d_1d_2)^3\rangle</math>, задание группы <math>\mathrm S_4</math>.</ul> | <li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: <math>\mathrm S_3\cong\langle d_1,d_2\!\mid d_1^2,d_2^2,(d_1d_2)^3\rangle</math>, задание группы <math>\mathrm S_4</math>.</ul> | ||
Строка 70: | Строка 70: | ||
<ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n=\!\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\!\varepsilon_{j_1,\ldots,j_n}a^{j_1}_1\!\cdot\ldots\cdot a^{j_n}_n</math>. Расстановки ладей и <math>\det</math>. | <ul><li>Определитель квадр. матрицы <math>a</math> над коммут. кольцом: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n=\!\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\!\varepsilon_{j_1,\ldots,j_n}a^{j_1}_1\!\cdot\ldots\cdot a^{j_n}_n</math>. Расстановки ладей и <math>\det</math>. | ||
<li><math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math> — ориент. площадь, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math> — ориент. объем. Теорема о свойствах определителя. | <li><math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math> — ориент. площадь, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math> — ориент. объем. Теорема о свойствах определителя. | ||
− | <p><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\!\in R</math> выполнено<br><math>\det | + | <p><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\!\in R</math> выполнено<br><math>\det\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)\!=c\,\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\;v_{i+1}\;\ldots\;v_n\bigr)\!+c'\det\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)</math>;<br>(2) для любых таких <math>v_1,\ldots,v_n\in R^n</math>, что <math>v_1,\ldots,v_n</math> не попарно различны, выполнено <math>\det\bigl(v_1\;\ldots\;v_n\bigr)\!=0</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a^\mathtt T\!=\det a</math>;<br>(4) для любых <math>n',n''\!\in\mathbb N_0</math>, <math>a'\!\in\mathrm{Mat}(n',R)</math>, <math>a''\!\in\mathrm{Mat}(n'',R)</math> и <math>b\in\mathrm{Mat}(n',n'',R)</math> выполнено <math>\det\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)\!=\det a'\!\cdot\det a''</math>.</i></p> |
<li>Анонс: пусть <math>K</math> — поле; тогда <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отобр. <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению. | <li>Анонс: пусть <math>K</math> — поле; тогда <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отобр. <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению. | ||
<li>Специальная линейн. группа: <math>\mathrm{SL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>. Утверждение: <math>\forall\,a,b\in\mathrm{Mat}(n,K)\;\bigl(b\cdot a=\mathrm{id}_n\Rightarrow\,b=a^{-1}\bigr)</math>. | <li>Специальная линейн. группа: <math>\mathrm{SL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>. Утверждение: <math>\forall\,a,b\in\mathrm{Mat}(n,K)\;\bigl(b\cdot a=\mathrm{id}_n\Rightarrow\,b=a^{-1}\bigr)</math>. |
Версия 09:00, 26 ноября 2017
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммутат. кольце : ; ; .
- Утверждение: пусть — обл. цел.-сти, и ; тогда и . Обозн.-е в обл. цел.-сти.
- Наибольший относ.-но общий делитель и : ; наименьшее относ.-но общее кратное и : ; и опред.-ны с точностью до .
- Нормировка и (если они не ) в и : и — в , многочлены и нормированы — в .
- Главный идеал — идеал вида . Пример неглавн. идеала: в . Область главных идеалов — обл. цел.-сти, в которой все идеалы главные.
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) если идеал главный, то , и, если идеал главный, то ;
(3) если в кольце все идеалы главные, то и существуют, а также . - Неприводимые и простые эл.-ты: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если — область главных идеалов, то ;
(3) для любых следующие утверждения эквивалентны: (у1) и (у2) — область целостности;
(4) если — область главных идеалов, то для любых следующие утверждения эквивалентны: (у1) , (у2) ,
(у3) — область целостности и (у4) — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма — такая функция , что относ.-но можно делить с остатком на ненул. эл.-ты и не убывает относ.-но на .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) в невозможна бесконечная строгая делимость (то есть в не существует такой бесконечной послед.-сти , что );
(3) если , то для любых выполнено ;
(4) — область главных идеалов (в частности, кольца и , где — поле, являются областями главных идеалов). - Факториальное кольцо — обл. цел.-сти с единств. (с точн.-ю до и перестановок) разложением любого ненул. эл.-та в произвед.-е неприводимых эл.-тов.
- Примеры: — факториальное кольцо (это основная теорема арифметики); если кольцо факториально, то и факториально (без доказательства).
- Теорема о факториальности евклидовых колец.
(1) Пусть — область целостности, в невозможна бесконечная строгая делимость и ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (в частности, кольца и , где — поле, являются факториальными кольцами). - Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) и ;
(2) и .
1.4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
- Соотношение Безу для эл.-тов и евклидова кольца: , где и — коэффициенты Безу. Нахождение в кольце .
- Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда, если , то .
- Расширенный алгоритм Евклида в евклидовом кольце: ; на -м шаге ; тогда .
- Китайская теорема об остатках для целых чисел. Пусть , и попарно взаимно просты (то есть
); тогда отображение — изоморфизм колец. - Китайская теорема об остатках для многочленов. Пусть — поле, , и попарно взаимно просты (то есть
); тогда отображение — изоморфизм колец. - Функция Эйлера от : . Пример: если и , то . Утверждение: .
- Теорема о свойствах функции Эйлера.
(1) Пусть , и ; тогда (это теорема Эйлера).
(2) Пусть и ; тогда .
(3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
; тогда .
1.4.4 Производная многочлена, интерполяция, рациональные дроби
- Производная многочлена: . Правило Лейбница. Пусть — кольцо и ; тогда .
- Корень кратности многочлена : (). Теорема о кратных корнях.
Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
(1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
(2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
(3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и . - Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный
такой многочлен , что и , и этот многочлен можно найти по следующим формулам:
(1) , где (это интерполяционная формула Лагранжа);
(2) , где и (это интерполяционная формула Ньютона). - Поле частных: , где и , .
- Теорема о поле частных. Отождествл.-е и . Примеры: , — поле рацион.-х дробей.
Теорема о поле частных. Пусть — область целостности; тогда отображение — инъективный гомоморфизм колец, а также
для любых и выполнено (и, значит, ). - Несократимая запись: (, нормир.). Приведение к несократ. записи. Правильная дробь: (). Выделение правил. дроби.
- Примарная дробь: (, нормир., , ). Простейшая дробь: (, нормир., , ).
- Метод неопределенных коэффиц.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).
1.4.5 Матрицы, столбцы, строки
- Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
- Умножение матриц: . Внешняя ассоциативность умножения. Кольцо , группа .
- Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
- Столбцы, строки, матрицы с нулями и одной единицей: , , . Утверждение: , , .
- Строки матрицы : . Столбцы матрицы : . Утверждение: , а также .
- Транспонирование матрицы : . След квадратной матрицы : . Теорема о транспонировании, следе и произведении матриц.
Теорема о транспонировании, следе и произведении матриц. Пусть — коммутативное кольцо, , и ;
тогда и , а также, если , то . - Симметрич. и антисимм. матрицы: и .
- Операторы умн.-я на матрицу между и : — группа по сложению. Теорема об операторах умножения на матрицу.
Теорема об операторах умножения на матрицу. Пусть — кольцо и ; тогда
(1) — изоморфизм групп по сложению и, если , то это отобр.-е — изоморфизм колец;
(2) если — комм. кольцо, то .
1.5 Группы (часть 2)
1.5.1 Симметрические группы
- Транспозиции: (, ). Фундаментальные транспозиции: (). Число циклов в перестановке : .
- Множество инверсий последовательности : . Лемма о количестве инверсий.
Лемма о количестве инверсий. Пусть , , и ; тогда
(1) ;
(2) если , то , и, если , то . - Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа ,
упорядоченные по неубыванию (то есть ); тогда
(1) существуют такие фундаментальные транспозиции , что ;
(2) для любых из существования таких фундаментальных транспозиций , что ,
следует, что , а также в том случае, когда числа попарно различны, что . - Знак посл.-сти : , если попарно различны; иначе . Пример: .
- Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: ; ().
Теорема о свойствах знака. Пусть ; тогда
(1) отображение — гомоморфизм групп, и, если , то это сюръективный гомоморфизм групп;
(2) для любых таких , что , выполнено и ;
(3) для любых и попарно различных чисел выполнено ;
(4) для любых выполнено . - Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
(неупорядоченные) наборы длин циклов перестановок и (то есть цикловые типы перестановок и ) равны. - Задание группы коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: , задание группы .
1.5.2 Группы матриц
- Определитель квадр. матрицы над коммут. кольцом: . Расстановки ладей и .
- — ориент. площадь, — ориент. объем. Теорема о свойствах определителя.
Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
(1) для любых , и выполнено
;
(2) для любых таких , что не попарно различны, выполнено ;
(3) для любых выполнено ;
(4) для любых , , и выполнено . - Анонс: пусть — поле; тогда и отобр. — гомоморфизм моноидов по умножению.
- Специальная линейн. группа: . Утверждение: .
- Ортогональная группа: . Специальная ортогон. группа: .
- Унитарная группа: . Специальная унитарная группа: .
- Изометрии в : (док.-во только ). Теорема о комплексных числах и вещественных матрицах.
Теорема о комплексных числах и вещественных матрицах. Отображение — изоморфизм колец, а также
и отображение — изоморфизм групп. - Аффинная линейная группа: . Геометрический смысл: .
1.5.3 Действия групп на множествах
- Действие группы на мн.-ве — гомоморфизм моноидов . Утверждение: . Обозначение: .
- Примеры: группа действует на , группы матриц действуют на , группа действует на сдвигами (где ) и на сопряжениями.
- Динамическая система с дискретнымнепрерывным временем (каскадпоток) — множество с действием группы группы . Теорема Кэли.
Теорема Кэли. Пусть — группа; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
(2) отображение — инъективный гомоморфизм групп. - -Множество — множество с действием группы . Гомоморфизмы -множеств: .
- Орбита точки : (, где ). Разбиение -множества на орбиты: .
- Транзитивное действие (однородное -мн.-во): . Стабилизатор: . Точное действие: .
- Свободное действие (свободное -мн.-во): . Торсор над — однородн. свободн. -мн.-во ().
- Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .
Теорема о классах смежности по стабилизатору. Пусть — группа, — -множество и ; тогда
(1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть ;
(2) если , то .Лемма Бернсайда. Пусть — группа, — -множество и ; тогда .
1.5.4 Автоморфизмы, коммутант, полупрямое произведение групп
- Группа автоморфизмов: . Пример: . Группа внутренних автоморф.-в: .
- Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморф.-в: .
Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
его образ есть (и, значит, ) и, кроме того, . - Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
- Утверждение: . Теорема о коммутанте. Пример: (док.-во только включения ). Абелианизация группы : .
Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).
- Простая группа: . Примеры: группы (), , ( — поле, ) простые (без доказ.-ва).
- Полупрямое произвед.-е относ.-но действия (): с бинарной операцией .
- Утверждение: — гомоморфизм групп. Пример: , где .
- Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то в пункте (2) условие "" можно заменить на условие "".