Алгебра phys 2 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
| Строка 19: | Строка 19: | ||
<li>Примеры: <math>\mathcal T^1_{\,\,2}V\cong\mathrm{Bi}(V,V,V)</math> — простр.-во структур алгебры на <math>V</math>, <math>\mathcal T^2_{\,\,1}V\cong\mathrm{Hom}(V,V\otimes V)</math> — простр.-во структур коалгебры на <math>V</math>, <math>\mathcal T_{\,q}V=\mathcal T^qV^*</math>. | <li>Примеры: <math>\mathcal T^1_{\,\,2}V\cong\mathrm{Bi}(V,V,V)</math> — простр.-во структур алгебры на <math>V</math>, <math>\mathcal T^2_{\,\,1}V\cong\mathrm{Hom}(V,V\otimes V)</math> — простр.-во структур коалгебры на <math>V</math>, <math>\mathcal T_{\,q}V=\mathcal T^qV^*</math>. | ||
<li><u>Теорема о канонических изоморфизмах для тензоров типа <b>(p,q)</b>.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>p,q\in\mathbb N_0</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\biggl(\!\begin{align}\mathcal T_{\,q}V&\to\mathrm{Multi}_qV\\\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((v_1,\ldots,v_q)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_q(v_q)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств;<br>(2) <math>\Biggl(\!\begin{align}\mathcal T^p_{\;q}V&\to\mathrm{Multi}(\overbrace{V,\ldots,V}^q,V^{\otimes p})\\\,v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((w_1,\ldots,w_q)\mapsto\lambda_1(w_1)\cdot\ldots\cdot\lambda_q(w_q)\;v_1\otimes\ldots\otimes v_p\bigr)\end{align}\!\Biggr)</math> — изоморфизм векторных пространств;<br>(3) <math>\Biggl(\!\begin{align}\mathcal T^p_{\;q}V&\to\mathrm{Multi}(\overbrace{V^*,\ldots,V^*}^p,\overbrace{V,\ldots,V}^q,K)\\\,v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((\mu_1,\ldots,\mu_p,w_1,\ldots,w_q)\mapsto\mu_1(v_1)\cdot\ldots\cdot\mu_p(v_p)\,\lambda_1(w_1)\cdot\ldots\cdot\lambda_q(w_q)\bigr)\end{align}\!\Biggr)</math> — изоморфизм вект. простр.-в.</i> | <li><u>Теорема о канонических изоморфизмах для тензоров типа <b>(p,q)</b>.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>p,q\in\mathbb N_0</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\biggl(\!\begin{align}\mathcal T_{\,q}V&\to\mathrm{Multi}_qV\\\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((v_1,\ldots,v_q)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_q(v_q)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств;<br>(2) <math>\Biggl(\!\begin{align}\mathcal T^p_{\;q}V&\to\mathrm{Multi}(\overbrace{V,\ldots,V}^q,V^{\otimes p})\\\,v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((w_1,\ldots,w_q)\mapsto\lambda_1(w_1)\cdot\ldots\cdot\lambda_q(w_q)\;v_1\otimes\ldots\otimes v_p\bigr)\end{align}\!\Biggr)</math> — изоморфизм векторных пространств;<br>(3) <math>\Biggl(\!\begin{align}\mathcal T^p_{\;q}V&\to\mathrm{Multi}(\overbrace{V^*,\ldots,V^*}^p,\overbrace{V,\ldots,V}^q,K)\\\,v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\bigl((\mu_1,\ldots,\mu_p,w_1,\ldots,w_q)\mapsto\mu_1(v_1)\cdot\ldots\cdot\mu_p(v_p)\,\lambda_1(w_1)\cdot\ldots\cdot\lambda_q(w_q)\bigr)\end{align}\!\Biggr)</math> — изоморфизм вект. простр.-в.</i> | ||
| − | <li> | + | <li>Тензор типа <math>(p,q)</math> в координатах: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\,e_{i_1}\!\otimes\ldots\otimes e_{i_p}\!\otimes e^{j_1}\!\otimes\ldots\otimes e^{j_q}</math>. Примеры: <math>v=\sum_{i=1}^nv^i\,e_i</math>, <math>\lambda=\sum_{j=1}^n\lambda_j\,e^j</math>, <math>a=\!\!\sum_{1\le i,j\le n}\!\!a^i_j\;e_i\otimes e^j</math>. |
<li>Примеры: <math>\sigma=\!\!\sum_{1\le j_1,j_2\le n}\!\!\sigma_{j_1,j_2}\,e^{j_1}\!\otimes e^{j_2}</math> — метрический тензор, <math>\mathrm{vol}^e\!=\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}\,e^{j_1}\!\otimes\ldots\otimes e^{j_n}</math> — форма объема, связанная с упоряд. базисом <math>e</math>. | <li>Примеры: <math>\sigma=\!\!\sum_{1\le j_1,j_2\le n}\!\!\sigma_{j_1,j_2}\,e^{j_1}\!\otimes e^{j_2}</math> — метрический тензор, <math>\mathrm{vol}^e\!=\!\!\!\sum_{1\le j_1,\ldots,j_n\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}\,e^{j_1}\!\otimes\ldots\otimes e^{j_n}</math> — форма объема, связанная с упоряд. базисом <math>e</math>. | ||
| − | <li>Преобразование при замене базиса: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}= | + | <li>Преобразование при замене базиса: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!(e_{k_1})^\tilde{i_1}\!\ldots(e_{k_p})^\tilde{i_p}(e_\tilde{j_1})^{l_1}\!\ldots(e_\tilde{j_q})^{l_q}\;T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}</math>. Примеры: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>, <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>. |
<li>Тензорная алгебра над <math>V</math>: <math>\mathcal T(V)=\bigoplus_{k=0}^\infty\mathcal T^kV</math> — ассоциативная <math>K</math>-алгебра с <math>1</math> (в опр.-и умнож.-я используются изоморфизмы <math>\mathcal T^kV\otimes\mathcal T^{k'}\!V\cong\mathcal T^{k+k'}\!V</math>). | <li>Тензорная алгебра над <math>V</math>: <math>\mathcal T(V)=\bigoplus_{k=0}^\infty\mathcal T^kV</math> — ассоциативная <math>K</math>-алгебра с <math>1</math> (в опр.-и умнож.-я используются изоморфизмы <math>\mathcal T^kV\otimes\mathcal T^{k'}\!V\cong\mathcal T^{k+k'}\!V</math>). | ||
<li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid k\in\mathbb N_0,\,i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> этого базиса<br>выполнено <math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> (и, значит, отображение, продолжающее по линейности заданное<br>на базисе отображение <math>\biggl(\!\begin{align}K_\otimes[x_1,\ldots,x_n]&\to\mathcal T(V)\\x_{i_1}\!\otimes\ldots\otimes x_{i_k}\!&\mapsto e_{i_1}\!\otimes\ldots\otimes e_{i_k}\end{align}\!\biggr)</math>, — изоморфизм алгебр с <math>1</math>).</i></ul> | <li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid k\in\mathbb N_0,\,i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> этого базиса<br>выполнено <math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> (и, значит, отображение, продолжающее по линейности заданное<br>на базисе отображение <math>\biggl(\!\begin{align}K_\otimes[x_1,\ldots,x_n]&\to\mathcal T(V)\\x_{i_1}\!\otimes\ldots\otimes x_{i_k}\!&\mapsto e_{i_1}\!\otimes\ldots\otimes e_{i_k}\end{align}\!\biggr)</math>, — изоморфизм алгебр с <math>1</math>).</i></ul> | ||
| Строка 32: | Строка 32: | ||
<p><u>Теорема о свертках тензоров малой валентности.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>v\in V</math>, <math>\lambda\in V^*</math> и <math>a\in\mathrm{End}(V)</math> выполнено <math>\lambda(v)=\mathrm{tr}^1_1(v\otimes\lambda)</math>, <math>\mathrm{tr}\,a=\mathrm{tr}^1_1(a)</math>, <math>a(v)=\mathrm{tr}^1_1(v\otimes a)</math> и <math>\lambda\circ a=\mathrm{tr}^1_2(a\otimes\lambda)</math>;<br>(2) для любых <math>v,w\in V</math> и <math>\sigma\in\mathrm{Bi}(V)</math> выполнено <math>\sigma(v,w)=\mathrm{tr}^1_1(\mathrm{tr}^1_1(v\otimes w\otimes\sigma))</math> и <math>\flat_\sigma v=\mathrm{tr}^1_1(v\otimes\sigma)</math>.</i></p> | <p><u>Теорема о свертках тензоров малой валентности.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>v\in V</math>, <math>\lambda\in V^*</math> и <math>a\in\mathrm{End}(V)</math> выполнено <math>\lambda(v)=\mathrm{tr}^1_1(v\otimes\lambda)</math>, <math>\mathrm{tr}\,a=\mathrm{tr}^1_1(a)</math>, <math>a(v)=\mathrm{tr}^1_1(v\otimes a)</math> и <math>\lambda\circ a=\mathrm{tr}^1_2(a\otimes\lambda)</math>;<br>(2) для любых <math>v,w\in V</math> и <math>\sigma\in\mathrm{Bi}(V)</math> выполнено <math>\sigma(v,w)=\mathrm{tr}^1_1(\mathrm{tr}^1_1(v\otimes w\otimes\sigma))</math> и <math>\flat_\sigma v=\mathrm{tr}^1_1(v\otimes\sigma)</math>.</i></p> | ||
<li><u>Теорема об обратном метрическом тензоре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)=\!\!\sum_{1\le i_1,i_2\le n}\!\!\sigma^{i_1,i_2}\,e_{i_1}\!\otimes e_{i_2}</math> (тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> — обратный тензор по отношению к тензору <math>\sigma</math>);<br>(2) под действием канонического изоморфизма <math>\biggl(\!\begin{align}V\otimes V&\to\mathrm{Bi}(V^*)\\v\otimes w&\mapsto\bigl((\lambda,\mu)\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> переходит в форму <math>(\lambda,\mu)\mapsto\sigma(\sharp^\sigma\lambda,\sharp^\sigma\mu)</math>;<br>(3) для любых <math>\lambda\in V^*</math> выполнено <math>\sharp^\sigma\lambda=\mathrm{tr}^2_1((\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)\otimes\lambda)</math>.</i> | <li><u>Теорема об обратном метрическом тензоре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)=\!\!\sum_{1\le i_1,i_2\le n}\!\!\sigma^{i_1,i_2}\,e_{i_1}\!\otimes e_{i_2}</math> (тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> — обратный тензор по отношению к тензору <math>\sigma</math>);<br>(2) под действием канонического изоморфизма <math>\biggl(\!\begin{align}V\otimes V&\to\mathrm{Bi}(V^*)\\v\otimes w&\mapsto\bigl((\lambda,\mu)\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> переходит в форму <math>(\lambda,\mu)\mapsto\sigma(\sharp^\sigma\lambda,\sharp^\sigma\mu)</math>;<br>(3) для любых <math>\lambda\in V^*</math> выполнено <math>\sharp^\sigma\lambda=\mathrm{tr}^2_1((\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)\otimes\lambda)</math>.</i> | ||
| − | <li>Опускание с <math>b</math>-й поз.-и | + | <li>Опускание индекса с <math>b</math>-й поз.-и: <math>(\mathrm{id}_V)^{\otimes(b-1)}\!\otimes\flat_\sigma\!\otimes(\mathrm{id}_V)^{\otimes(p-b)}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes q}</math>. Подъем индекса с <math>d</math>-й поз.-и: <math>(\mathrm{id}_V)^{\otimes p}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(d-1)}\!\otimes\sharp^\sigma\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(q-d)}</math>. |
| − | <li> | + | <li>Опускание индекса с <math>b</math>-й позиции в координатах: <math>\bigl(((\mathrm{id}_V)^{\otimes(b-1)}\!\otimes\flat_\sigma\!\otimes(\mathrm{id}_V)^{\otimes(p-b)}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes q})(T)\bigr)^{i_1,\ldots,i_{b-1}\,\,i_{b+1},\ldots,i_p}_{\;\;\;\;\;\;\;\;\;\;\;j\;\;\;\;\;\;\;\;\;\;\;\,j_1,\ldots,j_q}\!=\sum_{i_b=1}^nT^{i_1,\ldots,i_b,\ldots,i_p}_{j_1,\ldots,j_q}\sigma_{i_b,j}</math>. |
| − | + | <li>Подъем индекса с <math>d</math>-й позиции в координатах: <math>\bigl(((\mathrm{id}_V)^{\otimes p}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(d-1)}\!\otimes\sharp^\sigma\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(q-d)})(T)\bigr)^{i_1,\ldots,i_p\;\;\;\;\;\;\;\;\;\;\;i}_{\;\;\;\;\;\;\;\;\,j_1,\ldots,j_{d-1}\,\,j_{d+1},\ldots,j_q}\!=\sum_{j_d=1}^n\sigma^{i,j_d}\,T^{i_1,\ldots,i_p}_{j_1,\ldots,j_d,\ldots,j_q}</math>.</ul> | |
<h3>3.5 Симметрические и внешние степени векторных пространств</h3> | <h3>3.5 Симметрические и внешние степени векторных пространств</h3> | ||
| Строка 74: | Строка 74: | ||
<h5>3.6.2 Специальная ортохронная группа Лоренца</h5> | <h5>3.6.2 Специальная ортохронная группа Лоренца</h5> | ||
| − | <ul><li>Матричная группа Лоренца: <math>\mathrm O(1,3)=\{\Lambda\in\mathrm{Mat}(4,\mathbb R)\mid\Lambda^\mathtt T\eta\,\Lambda=\eta | + | <ul><li>Матричная группа Лоренца: <math>\mathrm O(1,3)=\{\Lambda\in\mathrm{Mat}(4,\mathbb R)\mid\Lambda^\mathtt T\eta\,\Lambda=\eta\}</math>, где <math>\eta=\Bigl(\begin{smallmatrix}1&0\\0&-\mathrm{id}_3\!\end{smallmatrix}\Bigr)</math>. Двумерная сфера: <math>\mathrm S^2\!=\{v\in\mathbb R^3\!\mid\|v\|=1\}</math> (<math>\|v\|=\!\sqrt{v^\mathtt Tv\,}</math>). |
<li><u>Теорема о матричной группе Лоренца.</u><br><i>(1) Пусть <math>\Lambda\in\mathrm{Mat}(4,\mathbb R)</math>; тогда <math>\Lambda\in\mathrm O(1,3)\,\Leftrightarrow\,\Lambda^\mathtt T\!\in\mathrm O(1,3)</math>, а также <math>\Lambda\in\mathrm O(1,3)\,\Rightarrow\,(\Lambda^\bullet_0)^\mathtt T\eta\,\Lambda^\bullet_0=\Lambda^0_\bullet\,\eta\,(\Lambda^0_\bullet)^\mathtt T\!=1</math>.<br>(2) Пусть <math>\Lambda\in\mathrm{Mat}(4,\mathbb R)</math> и <math>(\Lambda^\bullet_0)^\mathtt T\eta\,\Lambda^\bullet_0=\Lambda^0_\bullet\,\eta\,(\Lambda^0_\bullet)^\mathtt T\!=1</math>; введем следующие обозначения: <math>\varepsilon=\mathrm{sign}(\Lambda^0_0)</math> (<math>\varepsilon\in\{1,-1\}</math>), <math>\varphi=\mathrm{arcch}(|\Lambda^0_0|)</math> (<math>\varphi\in[0;\infty)</math>),<br><math>\varphi=0\,\Rightarrow\,u=w=\biggl(\begin{smallmatrix}0\\0\\0\end{smallmatrix}\biggr)</math>, <math>\varphi>0\,\Rightarrow\,u=\frac1{\mathrm{sh}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^1_0\\\Lambda^2_0\\\Lambda^3_0\end{smallmatrix}\Biggr)\land\,w=\frac1{\mathrm{sh}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^0_1\\\Lambda^0_2\\\Lambda^0_3\end{smallmatrix}\Biggr)</math> (<math>u,w\in\mathrm S^2\!</math>) и <math>f=\frac1{\mathrm{ch}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^1_1&\Lambda^1_2&\Lambda^1_3\\\Lambda^2_1&\Lambda^2_2&\Lambda^2_3\\\Lambda^3_1&\Lambda^3_2&\Lambda^3_3\end{smallmatrix}\Biggr)</math>; тогда <math>\Lambda=\Bigl(\begin{smallmatrix}\varepsilon\,\mathrm{ch}\,\varphi&\,\mathrm{sh}\,\varphi\;w^\mathtt T\!\\\mathrm{sh}\,\varphi\;u&\mathrm{ch}\,\varphi\,f\end{smallmatrix}\Bigr)</math>, а также<br><math>\Lambda\in\mathrm O(1,3)\,\Leftrightarrow\,w=\varepsilon f^\mathtt Tu\;\land\,(\mathrm{ch}\,\varphi)^2f^\mathtt Tf-(\mathrm{sh}\,\varphi)^2\,w\,w^\mathtt T\!=\mathrm{id}_3</math> и <math>\,\Lambda\in\mathrm O(1,3)\,\Rightarrow\,\det\Lambda\in\{1,-1\}\,\land\,\det\Lambda=\varepsilon\,(\mathrm{ch}\,\varphi)^2\det f</math>.<br>(3) <math>\Biggl(\!\begin{align}\mathrm O(1,3)&\to\{1,-1\}\times\{1,-1\}\\\!\Bigl(\begin{smallmatrix}\varepsilon\,\mathrm{ch}\,\varphi&\,\mathrm{sh}\,\varphi\;w^\mathtt T\!\\\mathrm{sh}\,\varphi\;u&\mathrm{ch}\,\varphi\,f\end{smallmatrix}\Bigr)\!&\mapsto(\varepsilon,\mathrm{sign}(\det f))\end{align}\!\Biggr)</math> — сюръективный гомоморфизм групп, и <math>\{\mathrm{id}_4,-\mathrm{id}_4,\eta,-\eta\}</math> — трансверсаль слоев этого гомоморфизма.<br>(4) Обозначая через <math>\,\mathrm{SO}^+(1,3)</math> ядро гомоморфизма из пункта (3), имеем след. факты: <math>\mathrm{SO}^+(1,3)\triangleleft\mathrm O(1,3)</math> и <math>\,\mathrm{SO}^+(1,3)=\{\Lambda\in\mathrm{SO}(1,3)\mid\Lambda^0_0\ge1\}</math>.</i> | <li><u>Теорема о матричной группе Лоренца.</u><br><i>(1) Пусть <math>\Lambda\in\mathrm{Mat}(4,\mathbb R)</math>; тогда <math>\Lambda\in\mathrm O(1,3)\,\Leftrightarrow\,\Lambda^\mathtt T\!\in\mathrm O(1,3)</math>, а также <math>\Lambda\in\mathrm O(1,3)\,\Rightarrow\,(\Lambda^\bullet_0)^\mathtt T\eta\,\Lambda^\bullet_0=\Lambda^0_\bullet\,\eta\,(\Lambda^0_\bullet)^\mathtt T\!=1</math>.<br>(2) Пусть <math>\Lambda\in\mathrm{Mat}(4,\mathbb R)</math> и <math>(\Lambda^\bullet_0)^\mathtt T\eta\,\Lambda^\bullet_0=\Lambda^0_\bullet\,\eta\,(\Lambda^0_\bullet)^\mathtt T\!=1</math>; введем следующие обозначения: <math>\varepsilon=\mathrm{sign}(\Lambda^0_0)</math> (<math>\varepsilon\in\{1,-1\}</math>), <math>\varphi=\mathrm{arcch}(|\Lambda^0_0|)</math> (<math>\varphi\in[0;\infty)</math>),<br><math>\varphi=0\,\Rightarrow\,u=w=\biggl(\begin{smallmatrix}0\\0\\0\end{smallmatrix}\biggr)</math>, <math>\varphi>0\,\Rightarrow\,u=\frac1{\mathrm{sh}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^1_0\\\Lambda^2_0\\\Lambda^3_0\end{smallmatrix}\Biggr)\land\,w=\frac1{\mathrm{sh}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^0_1\\\Lambda^0_2\\\Lambda^0_3\end{smallmatrix}\Biggr)</math> (<math>u,w\in\mathrm S^2\!</math>) и <math>f=\frac1{\mathrm{ch}\,\varphi}\Biggl(\begin{smallmatrix}\Lambda^1_1&\Lambda^1_2&\Lambda^1_3\\\Lambda^2_1&\Lambda^2_2&\Lambda^2_3\\\Lambda^3_1&\Lambda^3_2&\Lambda^3_3\end{smallmatrix}\Biggr)</math>; тогда <math>\Lambda=\Bigl(\begin{smallmatrix}\varepsilon\,\mathrm{ch}\,\varphi&\,\mathrm{sh}\,\varphi\;w^\mathtt T\!\\\mathrm{sh}\,\varphi\;u&\mathrm{ch}\,\varphi\,f\end{smallmatrix}\Bigr)</math>, а также<br><math>\Lambda\in\mathrm O(1,3)\,\Leftrightarrow\,w=\varepsilon f^\mathtt Tu\;\land\,(\mathrm{ch}\,\varphi)^2f^\mathtt Tf-(\mathrm{sh}\,\varphi)^2\,w\,w^\mathtt T\!=\mathrm{id}_3</math> и <math>\,\Lambda\in\mathrm O(1,3)\,\Rightarrow\,\det\Lambda\in\{1,-1\}\,\land\,\det\Lambda=\varepsilon\,(\mathrm{ch}\,\varphi)^2\det f</math>.<br>(3) <math>\Biggl(\!\begin{align}\mathrm O(1,3)&\to\{1,-1\}\times\{1,-1\}\\\!\Bigl(\begin{smallmatrix}\varepsilon\,\mathrm{ch}\,\varphi&\,\mathrm{sh}\,\varphi\;w^\mathtt T\!\\\mathrm{sh}\,\varphi\;u&\mathrm{ch}\,\varphi\,f\end{smallmatrix}\Bigr)\!&\mapsto(\varepsilon,\mathrm{sign}(\det f))\end{align}\!\Biggr)</math> — сюръективный гомоморфизм групп, и <math>\{\mathrm{id}_4,-\mathrm{id}_4,\eta,-\eta\}</math> — трансверсаль слоев этого гомоморфизма.<br>(4) Обозначая через <math>\,\mathrm{SO}^+(1,3)</math> ядро гомоморфизма из пункта (3), имеем след. факты: <math>\mathrm{SO}^+(1,3)\triangleleft\mathrm O(1,3)</math> и <math>\,\mathrm{SO}^+(1,3)=\{\Lambda\in\mathrm{SO}(1,3)\mid\Lambda^0_0\ge1\}</math>.</i> | ||
<li>Матричная специальная ортохронная группа Лоренца: <math>\mathrm{SO}^+(1,3)</math>. Бусты: <math>\bigl\{\Bigl(\begin{smallmatrix}\mathrm{ch}\,\varphi&\mathrm{sh}\,\varphi\;u^\mathtt T\\\mathrm{sh}\,\varphi\;u&\,\mathrm{id}_3+(\mathrm{ch}\,\varphi-1)\,u\,u^\mathtt T\!\end{smallmatrix}\Bigr)\!\mid\varphi\in\mathbb R,\,u\in\mathrm S^2\bigr\}</math>. Повороты: <math>\bigl\{\Bigl(\begin{smallmatrix}1&0\\0&h\end{smallmatrix}\Bigr)\!\mid h\in\mathrm{SO}(3)\bigr\}</math>. | <li>Матричная специальная ортохронная группа Лоренца: <math>\mathrm{SO}^+(1,3)</math>. Бусты: <math>\bigl\{\Bigl(\begin{smallmatrix}\mathrm{ch}\,\varphi&\mathrm{sh}\,\varphi\;u^\mathtt T\\\mathrm{sh}\,\varphi\;u&\,\mathrm{id}_3+(\mathrm{ch}\,\varphi-1)\,u\,u^\mathtt T\!\end{smallmatrix}\Bigr)\!\mid\varphi\in\mathbb R,\,u\in\mathrm S^2\bigr\}</math>. Повороты: <math>\bigl\{\Bigl(\begin{smallmatrix}1&0\\0&h\end{smallmatrix}\Bigr)\!\mid h\in\mathrm{SO}(3)\bigr\}</math>. | ||
| Строка 85: | Строка 85: | ||
<h3>3.7 Многообразия (часть 2)</h3> | <h3>3.7 Многообразия (часть 2)</h3> | ||
<h5>3.7.1 Дифференциальные формы</h5> | <h5>3.7.1 Дифференциальные формы</h5> | ||
| − | <!--<ul><li>Глобальная <math>n</math>-мерная система координат на <math>M</math> — биекция между <math>M</math> и открытым подмн.-вом в <math>\mathbb R^n</math>; соглашение: глобальность далее подразумевается. | + | <ul><li>Расслоение тензоров типа <math>(p,q)</math>: <math>\mathcal T^p_{\;q}\mathrm TM=\!\bigsqcup_{m\in M}\!\mathcal T^p_{\;q}(\mathrm T_mM)</math>. Тензорные поля типа <math>(p,q)</math>: <math>\mathrm{Tens}^p_q(M)=\{T\in\mathrm C^\infty\!(M,\mathcal T^p_{\;q}\mathrm TM)\mid\mathrm{pr}_M\!\circ T=\mathrm{id}_M\}</math>. |
| + | <li>В координатах: <math>T=\!\!\!\!\sum_{i_1,\ldots,i_p,j_1,\ldots,j_q}\!\!\!\!T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\frac\partial{\partial x^{i_1}}\!\otimes\ldots\otimes\!\frac\partial{\partial x^{i_p}}\!\otimes\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_q}</math>. Примеры: <math>v=\sum_{i=1}^nv^i\frac\partial{\partial x^i}</math>, <math>\omega=\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\otimes\ldots\otimes\mathrm dx^{j_k}</math>. | ||
| + | <li>Преобр.-е коорд. тенз. поля типа <math>(p,q)</math> при замене коорд. на <math>M</math>: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!\Bigl(\frac{\partial x^\tilde{i_1}}{\partial x^{k_1}}\!\circ\xi\Bigr)\ldots\Bigl(\frac{\partial x^\tilde{i_p}}{\partial x^{k_p}}\!\circ\xi\Bigr)\Bigl(\frac{\partial x^{l_1}}{\partial x^\tilde{j_1}}\!\circ\tilde\xi\Bigr)\ldots\Bigl(\frac{\partial x^{l_q}}{\partial x^\tilde{j_q}}\!\circ\tilde\xi\Bigr)\,T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}</math>. | ||
| + | <li>Дифференциальные <math>k</math>-формы: <math>\Omega^k(M)=\{\omega\in\mathrm{Multi}_k(M)\mid\forall\,m\in M\;\bigl(\omega(m)\in\mathrm{AMulti}_k(\mathrm T_mM)\bigr)\}</math>. Алгебра диффер. форм: <math>\Omega(M)=\bigoplus_{k=0}^n\Omega^k(M)</math>. | ||
| + | <li>Дифференциал <math>k</math>-формы: <math>\mathrm d\Bigl(\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}\!\Bigr)=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\mathrm d\omega_{j_1,\ldots,j_k}\!\wedge\mathrm dx^{j_1}\!\wedge\ldots\wedge\mathrm dx^{j_k}</math> — <math>(k+1)</math>-форма.</ul> | ||
| + | |||
| + | <!--<h5>3.7.2 Псевдоримановы многообразия (основные определения и примеры)</h5> | ||
| + | <ul><li>Глобальная <math>n</math>-мерная система координат на <math>M</math> — биекция между <math>M</math> и открытым подмн.-вом в <math>\mathbb R^n</math>; соглашение: глобальность далее подразумевается. | ||
<li>Отнош.-е согласованности: <math>\tilde\alpha\circ\alpha^{-1}</math> — диффеоморфизм; <math>n</math>-мерная гладкая структура — класс согласованности <math>n</math>-мерных систем координат (атлас). | <li>Отнош.-е согласованности: <math>\tilde\alpha\circ\alpha^{-1}</math> — диффеоморфизм; <math>n</math>-мерная гладкая структура — класс согласованности <math>n</math>-мерных систем координат (атлас). | ||
<li>Множество гладких отображений (морфизмов): <math>\mathrm C^\infty\!(M,N)=\{\varphi\in\mathrm{Map}(M,N)\mid\exists\,\alpha\in\mathcal A_M,\,\beta\in\mathcal B_N\;\bigl(\beta\circ\varphi\circ\alpha^{-1}\!\in\mathrm C^\infty\!(\mathrm{Codom}\,\alpha,\mathrm{Codom}\,\beta)\bigr)\}</math>. | <li>Множество гладких отображений (морфизмов): <math>\mathrm C^\infty\!(M,N)=\{\varphi\in\mathrm{Map}(M,N)\mid\exists\,\alpha\in\mathcal A_M,\,\beta\in\mathcal B_N\;\bigl(\beta\circ\varphi\circ\alpha^{-1}\!\in\mathrm C^\infty\!(\mathrm{Codom}\,\alpha,\mathrm{Codom}\,\beta)\bigr)\}</math>. | ||
| Строка 93: | Строка 100: | ||
<li>Скорость в координатах (<math>p\in\mathrm C^\infty\!(U,M)</math>, где <math>U</math> — откр. в <math>\mathbb R</math>, <math>\tau\in U</math>): <math>p'(\tau)^\alpha\!=\mathrm dp(\tau)_{\mathrm{id}_U}^\alpha\!\!=(\alpha\circ p)'(\tau)\in\mathbb R^n</math> и <math>p'(\tau)^i=(p'(\tau)^\alpha)^i=\bigl((\alpha\circ p)^i\bigr)'(\tau)</math>. | <li>Скорость в координатах (<math>p\in\mathrm C^\infty\!(U,M)</math>, где <math>U</math> — откр. в <math>\mathbb R</math>, <math>\tau\in U</math>): <math>p'(\tau)^\alpha\!=\mathrm dp(\tau)_{\mathrm{id}_U}^\alpha\!\!=(\alpha\circ p)'(\tau)\in\mathbb R^n</math> и <math>p'(\tau)^i=(p'(\tau)^\alpha)^i=\bigl((\alpha\circ p)^i\bigr)'(\tau)</math>. | ||
<li>Дифференциал в координатах (<math>f\in\mathrm{Func}(M)</math>): <math>\mathrm df(m)_\alpha\!=\mathrm df(m)_\alpha^{\mathrm{id}_\mathbb R}\!=\mathrm d(f\circ\alpha^{-1})(\alpha(m))\in\mathbb R_n</math> и <math>\partial_jf(m)=(\mathrm df(m)_\alpha)_j=\frac{\partial(f\circ\alpha^{-1})}{\partial x^j}(\alpha(m))</math>. | <li>Дифференциал в координатах (<math>f\in\mathrm{Func}(M)</math>): <math>\mathrm df(m)_\alpha\!=\mathrm df(m)_\alpha^{\mathrm{id}_\mathbb R}\!=\mathrm d(f\circ\alpha^{-1})(\alpha(m))\in\mathbb R_n</math> и <math>\partial_jf(m)=(\mathrm df(m)_\alpha)_j=\frac{\partial(f\circ\alpha^{-1})}{\partial x^j}(\alpha(m))</math>. | ||
| − | <li><u>Теорема о замене координат для скорости пути и дифференциала функции.</u> <i>Пусть <math>M</math> — многообразие (с г. г. с.), <math>m\in M</math>, <math>p\in\mathrm{Paths}(M)_m</math>,<br><math>f\in\mathrm{Func}(M)</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math>; обозначим через <math>n</math> число <math>\dim M</math>; тогда<br>(1) <math>p'(0)^\tilde\alpha\!=\mathrm c_\alpha^\tilde\alpha(m)\cdot p'(0)^\alpha</math> (это матричная запись) и <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(p'(0)^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\alpha(m))\,p'(0)^k\Bigr)</math> (это покомпонентная запись);<br>(2) <math>\mathrm df(m)_\tilde\alpha\!=\mathrm df(m)_\alpha\!\cdot\mathrm c_\tilde\alpha^\alpha(m)</math> (это матричная запись) и <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\partial_\tilde jf(m)=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\alpha(m))\,\partial_lf(m)\Bigr)</math> (это покомпонентная запись);<br>(3) <math>\forall\,\breve p\in\mathrm{Paths}(M)_m\;\bigl(p'(0)^\alpha\!=\breve p'(0)^\alpha\Leftrightarrow\,p'(0)^\tilde\alpha\!=\breve p'(0)^\tilde\alpha\bigr)</math> и <math>\forall\,\breve f\in\mathrm{Func}(M)\;\bigl(\mathrm df(m)_\alpha\!=\mathrm d\breve f(m)_\alpha\Leftrightarrow\,\mathrm df(m)_\tilde\alpha\!=\mathrm d\breve f(m)_\tilde\alpha\bigr)</math>.</i> | + | <li><u>Теорема о замене координат для скорости пути и дифференциала функции.</u> <i>Пусть <math>M</math> — многообразие (с г. г. с.), <math>m\in M</math>, <math>p\in\mathrm{Paths}(M)_m</math>,<br><math>f\in\mathrm{Func}(M)</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math>; обозначим через <math>n</math> число <math>\dim M</math>; тогда<br>(1) <math>p'(0)^\tilde\alpha\!=\mathrm c_\alpha^\tilde\alpha(m)\cdot p'(0)^\alpha</math> (это матричная запись) и <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(p'(0)^\tilde i=\sum_{k=1}^n\frac{\partial x^\tilde i}{\partial x^k}(\alpha(m))\,p'(0)^k\Bigr)</math> (это покомпонентная запись);<br>(2) <math>\mathrm df(m)_\tilde\alpha\!=\mathrm df(m)_\alpha\!\cdot\mathrm c_\tilde\alpha^\alpha(m)</math> (это матричная запись) и <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\partial_\tilde jf(m)=\sum_{l=1}^n\frac{\partial x^l}{\partial x^\tilde j}(\tilde\alpha(m))\,\partial_lf(m)\Bigr)</math> (это покомпонентная запись);<br>(3) <math>\forall\,\breve p\in\mathrm{Paths}(M)_m\;\bigl(p'(0)^\alpha\!=\breve p'(0)^\alpha\Leftrightarrow\,p'(0)^\tilde\alpha\!=\breve p'(0)^\tilde\alpha\bigr)</math> и <math>\forall\,\breve f\in\mathrm{Func}(M)\;\bigl(\mathrm df(m)_\alpha\!=\mathrm d\breve f(m)_\alpha\Leftrightarrow\,\mathrm df(m)_\tilde\alpha\!=\mathrm d\breve f(m)_\tilde\alpha\bigr)</math>.</i> |
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
<li>Псевдориманово многообразие сигнатуры <math>(p,q)</math> — многообразие с метрической формой сигнатуры <math>(p,q)</math> (форма имеет сигн.-у <math>(p,q)</math> в каждой точке). | <li>Псевдориманово многообразие сигнатуры <math>(p,q)</math> — многообразие с метрической формой сигнатуры <math>(p,q)</math> (форма имеет сигн.-у <math>(p,q)</math> в каждой точке). | ||
<li>Градиент функции: <math>\nabla f={\uparrow^\sigma}(\mathrm df)</math>; дивергенция и ротор вект. поля: <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow_\sigma}v)</math> и <math>\mathrm{rot}\,v={\uparrow^\sigma}(*\,\mathrm d({\downarrow_\sigma}v))</math>; лапласиан функции: <math>\Delta f=\mathrm{div}(\nabla f)</math><br>(опускание индекса, подъем индекса и оператор Ходжа на <math>M</math>: <math>({\downarrow_\sigma}v)(m)={\downarrow_{\sigma(m)}}(v(m))</math>, <math>({\uparrow^\sigma}\lambda)(m)={\uparrow^{\sigma(m)}}(\lambda(m))</math> и <math>(*\,\omega)(m)=*(\omega(m))</math>).</ul>--> | <li>Градиент функции: <math>\nabla f={\uparrow^\sigma}(\mathrm df)</math>; дивергенция и ротор вект. поля: <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow_\sigma}v)</math> и <math>\mathrm{rot}\,v={\uparrow^\sigma}(*\,\mathrm d({\downarrow_\sigma}v))</math>; лапласиан функции: <math>\Delta f=\mathrm{div}(\nabla f)</math><br>(опускание индекса, подъем индекса и оператор Ходжа на <math>M</math>: <math>({\downarrow_\sigma}v)(m)={\downarrow_{\sigma(m)}}(v(m))</math>, <math>({\uparrow^\sigma}\lambda)(m)={\uparrow^{\sigma(m)}}(\lambda(m))</math> и <math>(*\,\omega)(m)=*(\omega(m))</math>).</ul>--> | ||
Версия 00:00, 20 ноября 2017
3 Билинейная и полилинейная алгебра
|
3.4 Тензорные произведения векторных пространств
3.4.1 Определения и конструкции, связанные с тензорами
- Тензорное произведение пространств: , где и — подпространство полилинеаризации.
- Разложимый тензор: . Ранг тензора : есть миним. среди всех таких , что равен сумме разл. тензоров.
- Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
и отображение — полилинейный оператор. - Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
существ. единств. такой , что
(и, значит, отображение — изоморфизм векторных пространств). - Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
пространства , а также, если , то . - Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
- Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
и . - Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
(1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
(2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
3.4.2 Тензоры типа и тензорная алгебра
- Пространство тензоров типа над : . Примеры: , , , , .
- Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
- Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) — изоморфизм векторных пространств;
(2) — изоморфизм векторных пространств;
(3) — изоморфизм вект. простр.-в. - Тензор типа в координатах: . Примеры: , , .
- Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
- Преобразование при замене базиса: . Примеры: , .
- Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
- Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
— базис алгебры , и для любых элементов и этого базиса
выполнено (и, значит, отображение, продолжающее по линейности заданное
на базисе отображение , — изоморфизм алгебр с ).
3.4.3 Операции над тензорами
- Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
- Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
- Свертка по -й и -й позициям: .
- Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.
Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых , и выполнено , , и ;
(2) для любых и выполнено и . - Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
(1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
(2) под действием канонического изоморфизма тензор переходит в форму ;
(3) для любых выполнено . - Опускание индекса с -й поз.-и: . Подъем индекса с -й поз.-и: .
- Опускание индекса с -й позиции в координатах: .
- Подъем индекса с -й позиции в координатах: .
3.5 Симметрические и внешние степени векторных пространств
3.5.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами
- Симметрическая степень: . Внешняя степень: .
- Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
и ; обозначим через канонический изоморфизм ; тогда
(1) (напоминание: и );
(2) и (и, значит, и ). - Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.
Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) для любых выполнено и для любых выполнено ;
(3) и , а также и (и, значит, — проектор на и — проектор на ). - Симметрич. и внешнее произв. векторов: и . Пример: .
- Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — в. пр. над и ; тогда
(1) и отображение — симметричный полилинейный оператор;
(2) и отображение — антисимметричный полилинейный оператор. - Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
(1) для любых существует единственный такой , что ;
(2) для любых существует единственный такой , что . - Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
и ; тогда
(1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(3) и . - Симметрич. и внешняя степени лин. оператора (): и .
3.5.2 Симметрическая алгебра и внешняя алгебра
- Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
- Симметриз.-я и альтерн.-е в коорд.: и .
- Симметрическое и внешнее произв. в коорд.: и .
- Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
, и , , ; тогда
(1) и ;
(2) и ;
(3) и
(симметрическое произведение ассоциативно и внешнее произведение ассоциативно);
(4) и ;
(5) и (симметрическое произведение коммутативно и внешнее произведение суперкоммутативно). - Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
- Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
- Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
(1) — базис алгебры , и для любых элементов и этого
базиса выполнено , где числа суть числа , упоряд. по неубыванию;
(2) — базис алгебры , и для любых элементов и
этого базиса выполнено , где числа
суть числа , упорядоченные по возрастанию.
3.6 Геометрия в векторных пространствах над или (часть 2)
3.6.1 Объем, векторное произведение, оператор Ходжа
- Каноническая форма объема псевдоевклид. пр.-ве с ориентацией (): (если , то ).
- Корректность опр.-я объема. Объем в коорд.: . Лемма об объеме и матрице Грама.
Лемма об объеме и матрице Грама. Пусть — псевдоевклид. пр.-во с ориентацией, , , и ; тогда
и, если попарно ортогональны, то . - Неотрицат. объем в евкл. пр.-ве: в , если независимы; иначе .
- Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, ,
и ; тогда
(1) ;
(2) если , то . - Вект. произв.-е в псевдоевкл. пр.-ве с ориент.: ().
- Вект. произведение в координатах: . Теорема о векторном произведении.
Теорема о векторном произведении. Пусть — евклидово пространство с ориентацией, и ; тогда
(1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
(2) и . - Оператор Ходжа в псевдоевкл. пр.-ве с ориент.: (здесь ).
- Пример: . Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении.
Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
(1) для любых и выполнено ;
(2) для любых и выполнено , где числа
суть числа из множества , упорядоченные по возрастанию (в частности, и ).Теорема об операторе Ходжа и внешнем произведении. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
(1) для любых выполнено (и, значит, — изоморфизм векторных простр.-в);
(2) для любых выполнено , где (в координатах );
(3) для любых вып. , и, если , то для любых вып. .
3.6.2 Специальная ортохронная группа Лоренца
- Матричная группа Лоренца: , где . Двумерная сфера: ().
- Теорема о матричной группе Лоренца.
(1) Пусть ; тогда , а также .
(2) Пусть и ; введем следующие обозначения: (), (),
, () и ; тогда , а также
и .
(3) — сюръективный гомоморфизм групп, и — трансверсаль слоев этого гомоморфизма.
(4) Обозначая через ядро гомоморфизма из пункта (3), имеем след. факты: и . - Матричная специальная ортохронная группа Лоренца: . Бусты: . Повороты: .
- Пр.-во Минковского — псевдоевкл. пр.-во сигнатуры ; (это опр.-е не завис. от выбора базиса).
- Спинорная модель пр.-ва Минковского: — пр.-во эрмит.-х матриц разм. . Матрицы Паули: , , .
- Теорема о спинорной модели пространства Минковского.
(1) Пусть ; тогда и .
(2) Пусть , и ; тогда и .
(3) Форма определяет на структуру пространства Минковского, и .
(4) Обозначая через подпространство в , имеем следующие факты: , сужение формы из пункта (3), взятое с
противоположным знаком, определяет на структуру евклидова пространства, и , а также . - Теорема об описании бустов и поворотов в спинорной модели. Пусть , и ; тогда — буст с быстротой
вдоль оси с направляющим вектором , и — поворот на угол вокруг оси с направляющим вектором . - Спинорные представления: и — изоморфизмы групп (без доказ.-ва).
3.7 Многообразия (часть 2)
3.7.1 Дифференциальные формы
- Расслоение тензоров типа : . Тензорные поля типа : .
- В координатах: . Примеры: , .
- Преобр.-е коорд. тенз. поля типа при замене коорд. на : .
- Дифференциальные -формы: . Алгебра диффер. форм: .
- Дифференциал -формы: — -форма.