Алгебра phys 1 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 22: Строка 22:
 
<li>Инъекции: <math>\mathrm{Inj}(X,Y)=\{f\in\mathrm{Map}(X,Y)\mid\forall\,y\in Y\;\bigl(|f^{-1}(y)|\le1\bigr)\}</math>. Сюръекции: <math>\mathrm{Surj}(X,Y)=\{f\in\mathrm{Map}(X,Y)\mid\forall\,y\in Y\;\bigl(|f^{-1}(y)|\ge1\bigr)\}</math>.
 
<li>Инъекции: <math>\mathrm{Inj}(X,Y)=\{f\in\mathrm{Map}(X,Y)\mid\forall\,y\in Y\;\bigl(|f^{-1}(y)|\le1\bigr)\}</math>. Сюръекции: <math>\mathrm{Surj}(X,Y)=\{f\in\mathrm{Map}(X,Y)\mid\forall\,y\in Y\;\bigl(|f^{-1}(y)|\ge1\bigr)\}</math>.
 
<li>Биекции: <math>\mathrm{Bij}(X,Y)=\mathrm{Inj}(X,Y)\cap\mathrm{Surj}(X,Y)</math>. Композиция отображений <math>g</math> и <math>f</math>: <math>(g\circ f)(x)=g(f(x))</math>. Тождественное отображение: <math>\mathrm{id}_X(x)=x</math>.
 
<li>Биекции: <math>\mathrm{Bij}(X,Y)=\mathrm{Inj}(X,Y)\cap\mathrm{Surj}(X,Y)</math>. Композиция отображений <math>g</math> и <math>f</math>: <math>(g\circ f)(x)=g(f(x))</math>. Тождественное отображение: <math>\mathrm{id}_X(x)=x</math>.
<li><u>Теорема о композиции отображений.</u> <i>Пусть <math>X,Y</math> — множества и <math>f\in\mathrm{Map}(X,Y)</math>; тогда<br>(1) <math>f\circ\mathrm{id}_X=f</math>, <math>\mathrm{id}_Y\circ f=f</math> и, если <math>Z,W</math> — множества, <math>g\in\mathrm{Map}(Y,Z)</math> и <math>h\in\mathrm{Map}(Z,W)</math>, то <math>(h\circ g)\circ f=h\circ(g\circ f)</math>;<br>(2) если <math>X\ne\varnothing</math>, то <math>f</math> — инъекция, если и только если <math>\exists\,f'\in\mathrm{Map}(Y,X)\;\bigl(f'\circ f=\mathrm{id}_X\bigr)</math>;<br>(3) <math>f</math> — сюръекция, если и только если <math>\exists\,f'\in\mathrm{Map}(Y,X)\;\bigl(f\circ f'=\mathrm{id}_Y\bigr)</math>;<br>(4) <math>f</math> — биекция, если и только если <math>\exists\,f'\in\mathrm{Map}(Y,X)\;\bigl(f'\circ f=\mathrm{id}_X\,\land\,f\circ f'=\mathrm{id}_Y\bigr)</math>.</i>
+
<li><u>Теорема о композиции отображений.</u> <i>Пусть <math>X,Y</math> — множества и <math>f\in\mathrm{Map}(X,Y)</math>; тогда<br>(1) <math>f\circ\mathrm{id}_X=f</math>, <math>\mathrm{id}_Y\circ f=f</math> и, если <math>Z,W</math> — множества, <math>g\in\mathrm{Map}(Y,Z)</math> и <math>h\in\mathrm{Map}(Z,W)</math>, то <math>(h\circ g)\circ f=h\circ(g\circ f)</math>;<br>(2) если <math>X\ne\varnothing</math>, то <math>f</math> — инъекция, если и только если <math>\exists\,f'\!\in\mathrm{Map}(Y,X)\;\bigl(f'\circ f=\mathrm{id}_X\bigr)</math>;<br>(3) <math>f</math> — сюръекция, если и только если <math>\exists\,f'\!\in\mathrm{Map}(Y,X)\;\bigl(f\circ f'=\mathrm{id}_Y\bigr)</math>;<br>(4) <math>f</math> — биекция, если и только если <math>\exists\,f'\!\in\mathrm{Map}(Y,X)\;\bigl(f'\circ f=\mathrm{id}_X\,\land\,f\circ f'=\mathrm{id}_Y\bigr)</math>.</i>
 
<li>Отображение <math>f^{-1}</math>, обратное к отображению <math>f</math>: <math>f^{-1}\!\circ f=\mathrm{id}_X</math> и <math>f\circ f^{-1}\!=\mathrm{id}_Y</math>. Пример: взаимно обратные биекции <math>\biggl(\!\begin{align}\mathbb R&\to\mathbb R_{>0}\!\\x&\mapsto\mathrm e^x\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb R_{>0}\!&\to\mathbb R\\x&\mapsto\ln x\end{align}\!\biggr)</math>.</ul>
 
<li>Отображение <math>f^{-1}</math>, обратное к отображению <math>f</math>: <math>f^{-1}\!\circ f=\mathrm{id}_X</math> и <math>f\circ f^{-1}\!=\mathrm{id}_Y</math>. Пример: взаимно обратные биекции <math>\biggl(\!\begin{align}\mathbb R&\to\mathbb R_{>0}\!\\x&\mapsto\mathrm e^x\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathbb R_{>0}\!&\to\mathbb R\\x&\mapsto\ln x\end{align}\!\biggr)</math>.</ul>
  
 
<h5>1.1.3&nbsp; Отношения</h5>
 
<h5>1.1.3&nbsp; Отношения</h5>
 
<ul><li>Множество отношений между множествами <math>X</math> и <math>Y</math>: <math>\mathrm{Rel}(X,Y)</math>. Область отношения <math>\Delta</math>: <math>\mathrm{Dom}\,\Delta</math>. Кообласть отношения <math>\Delta</math>: <math>\mathrm{Codom}\,\Delta</math>. Примеры.
 
<ul><li>Множество отношений между множествами <math>X</math> и <math>Y</math>: <math>\mathrm{Rel}(X,Y)</math>. Область отношения <math>\Delta</math>: <math>\mathrm{Dom}\,\Delta</math>. Кообласть отношения <math>\Delta</math>: <math>\mathrm{Codom}\,\Delta</math>. Примеры.
<li>Отношения эквивалентности: <math>\mathrm{EquivRel}(X)=\{{\sim}\in\mathrm{Rel}(X,X)\mid\forall\,x,y,z\in X\;\bigl(x\sim x\,\land\,(x\sim y\,\Rightarrow\,y\sim x)\,\land\,(x\sim y\,\land\,y\sim z\,\Rightarrow\,x\sim z)\bigr)\}</math>.
+
<li>Отношение эквивалентности <math>\sim</math> на <math>X</math> — такое отн.-е между <math>X</math> и <math>X</math>, что <math>\forall\,x,y,z\in X\;\bigl(x\sim x\,\land\,(x\sim y\,\Rightarrow\,y\sim x)\,\land\,(x\sim y\,\land\,y\sim z\,\Rightarrow\,x\sim z)\bigr)</math>.
<li>Класс эквивалентности элемента <math>x</math>: <math>[x]_\sim\!=\{\breve x\in X\mid x\sim\breve x\}</math>. Утверждение: <math>x\sim\breve x\,\Leftrightarrow\,[x]_\sim\!=[\breve x]_\sim</math>. Фактормножество: <math>X/{\sim}=\{[x]_\sim\!\mid x\in X\}</math>.
+
<li>Класс эквивалентности: <math>[x]_\sim\!=\{\breve x\in X\mid x\sim\breve x\}</math>. Утверждение: <math>x\sim\breve x\;\Leftrightarrow\,[x]_\sim\!=[\breve x]_\sim</math>. Фактормножество: <math>X/{\sim}=\{[x]_\sim\!\mid x\in X\}</math>. Трансверсали.
<li>Разбиения: <math>\mathrm{Part}(X)=\{\mathcal P\subseteq2^X\!\setminus\!\{\varnothing\}\mid\bigcup_{A\in\mathcal P}\!A=X\;\land\;\forall\,A,B\in\mathcal P\;\bigl(A\ne B\,\Rightarrow\,A\cap B=\varnothing\bigr)\}</math>. Утверждение: <math>X/{\sim}\in\mathrm{Part}(X)</math>. Трансверсали.
+
<li>Разбиение <math>\mathcal P</math> множества <math>X</math> — такое подмн.-во в <math>2^X\!\setminus\!\{\varnothing\}</math>, что <math>\bigcup_{A\in\mathcal P}\!A=X</math> и <math>\forall\,A,B\in\mathcal P\;\bigl(A\ne B\,\Rightarrow A\cap B=\varnothing\bigr)</math>. Утверждение: <i><math>X/{\sim}</math> — разбиение</i>.
<li><u>Теорема об отношениях эквивалентности и разбиениях.</u> <i>Пусть <math>X</math> — множество; тогда отображение <math>\biggl(\!\begin{align}\mathrm{EquivRel}(X)&\to\mathrm{Part}(X)\\\sim&\mapsto X/{\sim}\end{align}\!\biggr)</math> — биекция.</i>
+
<li>Отношение <math>\underset{\scriptscriptstyle f}\sim</math>: <math>x\underset{\scriptscriptstyle f}\sim\breve x\;\Leftrightarrow\,f(x)=f(\breve x)</math>. Мн.-во слоев отобр.-я <math>f</math>: <math>\{f^{-1}(y)\mid y\in\mathrm{Im}\,f\}</math> (<math>=X/{\underset{\scriptscriptstyle f}\sim}</math>). Факторотображение <math>\Biggl(\!\begin{align}X/{\underset{\scriptscriptstyle f}\sim}&\to\mathrm{Im}\,f\\{[x]_\underset{\scriptscriptstyle f}\sim}\!&\mapsto f(x)\end{align}\Biggr)</math> — биекция.
<li>Отношение <math>\underset{\scriptscriptstyle f}\sim</math>: <math>x\;\underset{\scriptscriptstyle f}\sim\;\breve x\,\Leftrightarrow\,f(x)=f(\breve x)</math>. Мн.-во слоев отобр.-я <math>f</math>: <math>\{f^{-1}(y)\mid y\in\mathrm{Im}\,f\}</math> (<math>=X/{\underset{\scriptscriptstyle f}\sim}</math>). Факторотображение <math>\Biggl(\!\begin{align}X/{\underset{\scriptscriptstyle f}\sim}&\to\mathrm{Im}\,f\\{[}x{]}_\underset{\scriptscriptstyle f}\sim\!&\mapsto f(x)\end{align}\Biggr)</math> — биекция.
+
<li>Утверждение: <math>\sum_{y\in\mathrm{Im}\,f}\!|f^{-1}(y)|=|X|</math>. <u>Принцип Дирихле.</u> <i>Пусть <math>X,Y</math> — множества и <math>|X|=|Y|<\infty</math>; тогда <math>\,\mathrm{Inj}(X,Y)=\mathrm{Surj}(X,Y)=\mathrm{Bij}(X,Y)</math>.</i>
<li>Утверждение: <math>\sum_{y\in\mathrm{Im}\,f}\!\!|f^{-1}(y)|=|X|</math>. <u>Принцип Дирихле.</u> <i>Пусть <math>X,Y</math> — множества и <math>|X|=|Y|<\infty</math>; тогда <math>\,\mathrm{Inj}(X,Y)=\mathrm{Surj}(X,Y)=\mathrm{Bij}(X,Y)</math>.</i></ul>
+
<li>Отношение порядка <math>\preceq</math> на <math>X</math> — такое отн.-е между <math>X</math> и <math>X</math>, что <math>\forall\,x,y,z\in X\;\bigl(x\preceq x\,\land\,(x\preceq y\,\land\,y\preceq x\,\Rightarrow\,x=y)\,\land\,(x\preceq y\,\land\,y\preceq z\,\Rightarrow\,x\preceq z)\bigr)</math>.
 +
<li>Наименьший эл.-т <math>a</math> мн.-ва <math>X</math> с отн.-ем порядка <math>\preceq</math>: <math>\forall\,x\in X\;\bigl(a\preceq x\bigr)</math>. Единственность наименьшего эл.-та. Наибольший эл.-т мн.-ва с отн.-ем порядка.</ul>
  
 
<h3>1.2&nbsp; Группы (часть 1)</h3>
 
<h3>1.2&nbsp; Группы (часть 1)</h3>
Строка 48: Строка 49:
 
<ul><li>Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
 
<ul><li>Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
 
<li>Примеры: числовые моноиды, моноиды остатков, моноиды функций <math>\mathrm{Func}(X,M)</math>, моноиды отображений <math>\mathrm{Map}(X)</math>, моноиды слов <math>\mathrm W(X)</math> и <math>\mathrm W(X)^\mathtt{ab}</math>.
 
<li>Примеры: числовые моноиды, моноиды остатков, моноиды функций <math>\mathrm{Func}(X,M)</math>, моноиды отображений <math>\mathrm{Map}(X)</math>, моноиды слов <math>\mathrm W(X)</math> и <math>\mathrm W(X)^\mathtt{ab}</math>.
<li>Обратимые элементы: <math>M^\times\!=\{m\in M\mid\exists\,m'\in M\;\bigl(m'\,m=m\,m'=1\bigr)\}</math>. Единственность обратного элемента. Утверждение: <math>M^\times\!\cdot M^\times\!\subseteq M^\times</math>.
+
<li>Обратимые элементы: <math>M^\times\!=\{m\in M\mid\exists\,m'\!\in M\;\bigl(m'\,m=m\,m'=1\bigr)\}</math>. Единственность обратного элемента. Утверждение: <math>M^\times\!\cdot M^\times\!\subseteq M^\times</math>.
 
<li>Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа <math>M^\times</math> (<math>M</math> — моноид). Таблица Кэли. Изоморфные группы: <math>G\cong J</math>.
 
<li>Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа <math>M^\times</math> (<math>M</math> — моноид). Таблица Кэли. Изоморфные группы: <math>G\cong J</math>.
 
<li>Примеры: числовые группы, группы остатков <math>(\mathbb Z/n)^+</math> и <math>(\mathbb Z/n)^\times</math>, группы функций <math>\mathrm{Func}(X,G)</math>, группы биекций <math>\mathrm{Bij}(X)</math>, свободные группы <math>\mathrm F(X)</math>.
 
<li>Примеры: числовые группы, группы остатков <math>(\mathbb Z/n)^+</math> и <math>(\mathbb Z/n)^\times</math>, группы функций <math>\mathrm{Func}(X,G)</math>, группы биекций <math>\mathrm{Bij}(X)</math>, свободные группы <math>\mathrm F(X)</math>.
Строка 57: Строка 58:
  
 
<h5>1.2.3&nbsp; Подгруппы, классы смежности, циклические группы</h5>
 
<h5>1.2.3&nbsp; Подгруппы, классы смежности, циклические группы</h5>
<ul><li>Подгруппа: <math>H\le G\,\Leftrightarrow\,H\,H\subseteq H\,\land\,1\in H\,\land\,H^{-1}\!\subseteq H</math>. Подгруппа, порожденная множеством <math>D</math>: <math>\langle D\rangle</math> — наименьшая подгруппа, содержащая <math>D</math>.
+
<ul><li>Подгруппа: <math>H\le G\,\Leftrightarrow\,H\,H\subseteq H\,\land\,1\in H\,\land\,H^{-1}\!\subseteq H</math>. Подгруппа, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle</math> — наименьш. относ.-но <math>\subseteq</math> подгруппа, содержащая <math>D</math>.
 
<li>Утверждение: <i><math>\langle D\rangle=\{d_1^{\varepsilon_1}\!\cdot\ldots\cdot d_n^{\varepsilon_n}\!\mid n\in\mathbb N_0,\,d_1,\ldots,d_n\in D,\,\varepsilon_1,\ldots,\varepsilon_n\in\{1,-1\}\}</math> (в частности, <math>\langle g\rangle=\{g^a\!\mid a\in\mathbb Z\}</math>)</i>. Пример: <math>(\mathbb Z/n)^+\!=\langle1\rangle</math>.
 
<li>Утверждение: <i><math>\langle D\rangle=\{d_1^{\varepsilon_1}\!\cdot\ldots\cdot d_n^{\varepsilon_n}\!\mid n\in\mathbb N_0,\,d_1,\ldots,d_n\in D,\,\varepsilon_1,\ldots,\varepsilon_n\in\{1,-1\}\}</math> (в частности, <math>\langle g\rangle=\{g^a\!\mid a\in\mathbb Z\}</math>)</i>. Пример: <math>(\mathbb Z/n)^+\!=\langle1\rangle</math>.
 
<li>Отношения <math>\underset{\;\,\scriptscriptstyle H}\sim</math> и <math>\underset{\scriptscriptstyle H\;\,}\sim</math> (<math>H\le G</math>): <math>g\,\underset{\;\,\scriptscriptstyle H}\sim\;\breve g\,\Leftrightarrow\,g^{-1}\breve g\in H</math> (<math>\Leftrightarrow\,gH=\breve gH</math>) и <math>g\;\underset{\scriptscriptstyle H\;\,}\sim\,\breve g\,\Leftrightarrow\,\breve g\,g^{-1}\!\in H</math> (<math>\Leftrightarrow\,Hg=H\breve g</math>). Утверждение: <i><math>[g]\!_\underset{\;\,\scriptscriptstyle H}\sim\!=gH</math> и <math>[g]_\underset{\scriptscriptstyle H\;\,}\sim\!\!=Hg</math></i>.
 
<li>Отношения <math>\underset{\;\,\scriptscriptstyle H}\sim</math> и <math>\underset{\scriptscriptstyle H\;\,}\sim</math> (<math>H\le G</math>): <math>g\,\underset{\;\,\scriptscriptstyle H}\sim\;\breve g\,\Leftrightarrow\,g^{-1}\breve g\in H</math> (<math>\Leftrightarrow\,gH=\breve gH</math>) и <math>g\;\underset{\scriptscriptstyle H\;\,}\sim\,\breve g\,\Leftrightarrow\,\breve g\,g^{-1}\!\in H</math> (<math>\Leftrightarrow\,Hg=H\breve g</math>). Утверждение: <i><math>[g]\!_\underset{\;\,\scriptscriptstyle H}\sim\!=gH</math> и <math>[g]_\underset{\scriptscriptstyle H\;\,}\sim\!\!=Hg</math></i>.
Строка 71: Строка 72:
 
<ul><li>Нормальная подгруппа: <math>H\trianglelefteq G\,\Leftrightarrow\,H\le G\,\land\,\forall\,g\in G\;\bigl(gHg^{-1}\!\subseteq H\bigr)\,\Leftrightarrow\,H\le G\,\land\,\forall\,g\in G\;\bigl(gH=Hg\bigr)</math>. Пример: если <math>|G:H|=2</math>, то <math>H\trianglelefteq G</math>.
 
<ul><li>Нормальная подгруппа: <math>H\trianglelefteq G\,\Leftrightarrow\,H\le G\,\land\,\forall\,g\in G\;\bigl(gHg^{-1}\!\subseteq H\bigr)\,\Leftrightarrow\,H\le G\,\land\,\forall\,g\in G\;\bigl(gH=Hg\bigr)</math>. Пример: если <math>|G:H|=2</math>, то <math>H\trianglelefteq G</math>.
 
<li>Сопряжение при помощи эл.-та <math>g</math>: <math>\biggl(\!\begin{align}G&\to G\\x&\mapsto g\,x\,g^{-1}\!\end{align}\!\biggr)</math>. Отнош.-е сопряженности: <math>\bigl(</math><math>x</math> и <math>\breve x</math> сопряжены<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in G\;\bigl(\breve x=g\,x\,g^{-1}\bigr)</math>. Классы сопряженности.
 
<li>Сопряжение при помощи эл.-та <math>g</math>: <math>\biggl(\!\begin{align}G&\to G\\x&\mapsto g\,x\,g^{-1}\!\end{align}\!\biggr)</math>. Отнош.-е сопряженности: <math>\bigl(</math><math>x</math> и <math>\breve x</math> сопряжены<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in G\;\bigl(\breve x=g\,x\,g^{-1}\bigr)</math>. Классы сопряженности.
<li>Нормальная подгруппа, порожденная множеством <math>T</math>: <math>(T)</math> — наименьшая нормальная подгруппа, содержащая <math>T</math>. Утверждение: <math>(T)=\bigl\langle\!\bigcup_{g\in G}g\,Tg^{-1}\bigr\rangle</math>.
+
<li>Нормальная подгруппа, порожд. мн.-вом <math>T</math>: <math>(T)</math> — наименьш. относ.-но <math>\subseteq</math> нормальная подгруппа, содержащая <math>T</math>. Утверждение: <math>(T)=\bigl\langle\!\bigcup_{g\in G}g\,Tg^{-1}\bigr\rangle</math>.
 
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(1)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq G</math> и <math>\,\mathrm{Im}\,f\le J</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
 
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(1)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq G</math> и <math>\,\mathrm{Im}\,f\le J</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда<br>(1) для любых <math>j\in J</math> и <math>g_0\in f^{-1}(j)</math> выполнено <math>f^{-1}(j)=g_0\,\mathrm{Ker}\,f</math>;<br>(2) <math>f</math> — инъекция, если и только если <math>\,\mathrm{Ker}\,f=\{1\}</math>.</i></p>
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда<br>(1) для любых <math>j\in J</math> и <math>g_0\in f^{-1}(j)</math> выполнено <math>f^{-1}(j)=g_0\,\mathrm{Ker}\,f</math>;<br>(2) <math>f</math> — инъекция, если и только если <math>\,\mathrm{Ker}\,f=\{1\}</math>.</i></p>
Строка 111: Строка 112:
 
<li>Группа <math>\mathrm S^1</math>: <math>\mathrm S^1\!=\{g\in\mathbb C\mid|g|=1\}</math>. Утверждение: <math>\mathbb C^\times\!\cong\mathbb R_{>0}\!\times\mathrm S^1</math>. Экспонента от компл. числа <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты.
 
<li>Группа <math>\mathrm S^1</math>: <math>\mathrm S^1\!=\{g\in\mathbb C\mid|g|=1\}</math>. Утверждение: <math>\mathbb C^\times\!\cong\mathbb R_{>0}\!\times\mathrm S^1</math>. Экспонента от компл. числа <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты.
 
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\mathrm e^{a+b}\!=\mathrm e^a\!\cdot\mathrm e^b</math>, а также <math>\mathrm e^0\!=1</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Для любых <math>\varphi\in\mathbb R</math> выполнено <math>\mathrm e^{\varphi\,\mathrm i}\!=\cos\varphi+\sin\varphi\;\mathrm i</math> (и, значит, <math>\mathrm S^1\!=\{\mathrm e^{\varphi\,\mathrm i}\!\mid\varphi\in[0;2\pi)\}</math> и <math>\,\mathrm S^1\!\cong\mathbb R^+\!/2\pi\,\mathbb Z</math>).</i></p>
 
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\mathrm e^{a+b}\!=\mathrm e^a\!\cdot\mathrm e^b</math>, а также <math>\mathrm e^0\!=1</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Для любых <math>\varphi\in\mathbb R</math> выполнено <math>\mathrm e^{\varphi\,\mathrm i}\!=\cos\varphi+\sin\varphi\;\mathrm i</math> (и, значит, <math>\mathrm S^1\!=\{\mathrm e^{\varphi\,\mathrm i}\!\mid\varphi\in[0;2\pi)\}</math> и <math>\,\mathrm S^1\!\cong\mathbb R^+\!/2\pi\,\mathbb Z</math>).</i></p>
<li>Тригонометрическая запись: <math>r\,(\cos\varphi+\sin\varphi\;\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Группа корней <math>n</math>-й степ. из <math>1</math>: <math>\{a\in\mathbb C\mid a^n\!=1\}=\{\mathrm e^{\frac{2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle</math>.
+
<li>Тригонометрическая запись: <math>r\,(\cos\varphi+\sin\varphi\;\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Группа корней <math>n</math>-й степ. из <math>1</math>: <math>\mathrm C_n\!=\{a\in\mathbb C\mid a^n\!=1\}=\{1,\mathrm e^{\frac{2\pi}n\mathrm i},\ldots,\mathrm e^{\frac{2\pi(n-1)}n\mathrm i}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle</math>.
<li>Первообразные корни <math>n</math>-й степени из <math>1</math>. Корни <math>n</math>-й степени из <math>r\,\mathrm e^{\varphi\,\mathrm i}</math>: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\sqrt[n]r\,\mathrm e^{\frac\varphi n\mathrm i}\,\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle</math>.
+
<li>Первообразные корни <math>n</math>-й степени из <math>1</math>. Корни <math>n</math>-й степени из <math>r\,\mathrm e^{\varphi\,\mathrm i}</math>: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac\varphi n\mathrm i},\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi}n\mathrm i},\ldots,\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi(n-1)}n\mathrm i}\}=\sqrt[n]r\,\mathrm e^{\frac\varphi n\mathrm i}\,\mathrm C_n</math>.
 
<li>«Основная теорема алгебры»: <math>\mathbb C</math> — алгебраически замкнутое поле, то есть <math>\forall\,f\in\mathbb C[x]\!\setminus\!\mathbb C^\times\;\exists\,a\in\mathbb C\;\bigl(f(a)=0\bigr)</math> (без доказ.-ва; см. § 3 главы 6 в [3]).
 
<li>«Основная теорема алгебры»: <math>\mathbb C</math> — алгебраически замкнутое поле, то есть <math>\forall\,f\in\mathbb C[x]\!\setminus\!\mathbb C^\times\;\exists\,a\in\mathbb C\;\bigl(f(a)=0\bigr)</math> (без доказ.-ва; см. § 3 главы 6 в [3]).
 
<li><u>Теорема о неприводимых многочленах над полями <b>R</b> и <b>C</b>.</u><br><i>(1) Пусть <math>f\in\mathbb R[x]</math>, <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>; тогда <math>f(\alpha+\beta\,\mathrm i)=0\;\Leftrightarrow\,f(\alpha-\beta\,\mathrm i)=0\;\Leftrightarrow\,(x^2-2\alpha\,x+\alpha^2+\beta^2)\,|\,f</math>.<br>(2) <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math> и <math>\,\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math>.</i></ul>
 
<li><u>Теорема о неприводимых многочленах над полями <b>R</b> и <b>C</b>.</u><br><i>(1) Пусть <math>f\in\mathbb R[x]</math>, <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>; тогда <math>f(\alpha+\beta\,\mathrm i)=0\;\Leftrightarrow\,f(\alpha-\beta\,\mathrm i)=0\;\Leftrightarrow\,(x^2-2\alpha\,x+\alpha^2+\beta^2)\,|\,f</math>.<br>(2) <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math> и <math>\,\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math>.</i></ul>

Версия 14:00, 16 декабря 2017

1  Основы алгебры

Читателю может потребоваться усилие воли, чтобы увидеть в математике воспитателя образного мышления. Чаще с ней связы-
вается представление о жесткой логике и вычислительном формализме. Но это — лишь дисциплина, линейка, которой нас учат
не умирать. Вычислительный формализм математики — мысль, экстериоризованная до такой степени, что она на время отчуж-
дается и превращается в технологический процесс. Математический образ формируется в затяжном приживлении к человеку
этой временно отторгнутой мысли. Думать — значит вычислять, волнуясь.
Ю.И. Манин. Математика и физика
Развитие современной физики потребовало такого математического аппарата, который непрерывно расширяет свои основания и
становится все более и более абстрактным. Неевклидова геометрия и некоммутативная алгебра, которые одно время считались
чистой игрой разума и упражнениями для логических размышлений, теперь оказались необходимыми для описания весьма общих
закономерностей физического мира. Похоже, что этот процесс возрастания степени абстракции будет продолжаться и в будущем
и что развитие физики следует связывать с непрерывной модификацией и обобщением аксиом, лежащих в основе математики, а
не с логическим развитием какой бы то ни было математической схемы, построенной на фиксированном основании.
П.А.М. Дирак. Квантованные сингулярности в электромагнитном поле

1.1  Множества, отображения, отношения

1.1.1  Множества
  • Логические операции: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
  • Кванторы: — существование («существует»), — всеобщность («для любых»), — существование и единственность («существует единственный»).
  • Принадлежность: . Равенство множеств: . Включение и строгое включение между множ.-вами: и .
  • Кванторы по элементам множества: и . Задание множества перечислением элементов: . Пустое множество: .
  • Выделение подмножества: . Операции над мн.-вами: — объединение, — пересечение, — разность, — прямое произведение.
  • Теорема об операциях над множествами. Пусть — множества; тогда
    (1) и , а также и ;
    (2) и ;
    (3) если — множество и , то и .
  • Числовые множества: , , , — мн.-ва натуральных, целых, рациональных, вещественных чисел, , ().
  • Множество подмножеств мн.-ва : . Прямая степень мн.-ва (): . Порядок (количество элементов) мн.-ва : ().
1.1.2  Отображения
  • Множество отображений, действующих из мн.-ва в мн.-во : . Область отобр.-я : . Кообласть отобр.-я : . Примеры.
  • Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
  • Сужения отображения ( и ): и . Сокращенная запись образа: .
  • Инъекции: . Сюръекции: .
  • Биекции: . Композиция отображений и : . Тождественное отображение: .
  • Теорема о композиции отображений. Пусть — множества и ; тогда
    (1) , и, если — множества, и , то ;
    (2) если , то — инъекция, если и только если ;
    (3) — сюръекция, если и только если ;
    (4) — биекция, если и только если .
  • Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3  Отношения
  • Множество отношений между множествами и : . Область отношения : . Кообласть отношения : . Примеры.
  • Отношение эквивалентности на — такое отн.-е между и , что .
  • Класс эквивалентности: . Утверждение: . Фактормножество: . Трансверсали.
  • Разбиение множества — такое подмн.-во в , что и . Утверждение: — разбиение.
  • Отношение : . Мн.-во слоев отобр.-я : (). Факторотображение — биекция.
  • Утверждение: . Принцип Дирихле. Пусть — множества и ; тогда .
  • Отношение порядка на — такое отн.-е между и , что .
  • Наименьший эл.-т мн.-ва с отн.-ем порядка : . Единственность наименьшего эл.-та. Наибольший эл.-т мн.-ва с отн.-ем порядка.

1.2  Группы (часть 1)

1.2.1  Множества с операцией
  • Внутренняя -арная операция на мн.-ве — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
  • Гомоморфизмы между мн.-вами с операцией: .
  • Изоморфизмы: . Эндоморфизмы мн.-ва с опер.: . Автоморфизмы: .
  • Теорема о композиции гомоморфизмов. Пусть и — множества с -арной операцией; тогда
    (1) для любых и выполнено ;
    (2) для любых выполнено .
  • Обозначение по Минковскому: . Примеры: , , .
  • Инфиксная запись бинарных опер.-й. Ассоциативность: ; коммутативность (абелевость): .
  • Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности. Степени эл.-та полугруппы.

    Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
    расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).

1.2.2  Моноиды и группы (основные определения и примеры)
  • Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
  • Примеры: числовые моноиды, моноиды остатков, моноиды функций , моноиды отображений , моноиды слов и .
  • Обратимые элементы: . Единственность обратного элемента. Утверждение: .
  • Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
  • Примеры: числовые группы, группы остатков и , группы функций , группы биекций , свободные группы .
  • Группа изометрий пр.-ва : , где .
  • Симметрические группы: . Запись перестановки в виде послед.-сти значений. Цикловая запись перестановки. Лемма о циклах.

    Лемма о циклах. Пусть , , числа попарно различны и ; тогда
    , а также .

  • Мультипликативные обозначения: , , , (). Степени эл.-та группы. Аддитивные обозн.-я в абелевой группе: , , , ().
1.2.3  Подгруппы, классы смежности, циклические группы
  • Подгруппа: . Подгруппа, порожд. мн.-вом : — наименьш. относ.-но подгруппа, содержащая .
  • Утверждение: (в частности, ). Пример: .
  • Отношения и (): () и (). Утверждение: и .
  • Множества классов смежности: и . Теорема Лагранжа. Индекс: .

    Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).

  • Порядок элемента: (). Утверждение: пусть ; тогда .
  • Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
  • Теорема об обратимых остатках.
    (1) Пусть и ; тогда .
    (2) Пусть ; тогда (в частности, если , то ).
    (3) Пусть , и не делит ; тогда (это малая теорема Ферма).
  • Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.

    Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .

1.2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
  • Нормальная подгруппа: . Пример: если , то .
  • Сопряжение при помощи эл.-та : . Отнош.-е сопряженности: и сопряжены. Классы сопряженности.
  • Нормальная подгруппа, порожд. мн.-вом : — наименьш. относ.-но нормальная подгруппа, содержащая . Утверждение: .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Факторгруппа: с фактороперациями (). Корректность опред.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — группы и ; тогда .

  • Задание группы образующими и соотношениями ( — множество, ): . Пример: .
  • Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
  • Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".

1.3  Кольца (часть 1)

1.3.1  Определения и конструкции, связанные с кольцами
  • Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
  • Примеры: числовые кольца, кольца остатков , кольца функций . Аддитивная группа и мультипликативная группа кольца : и .
  • Подкольцо: . Подкольцо, порожд. мн.-вом : (в частности, ).
  • Идеал: . Идеал, порожденный мн.-вом : . Пример: если — коммут. кольцо и , то .
  • Ядро и образ гомоморфизма : и . Факторкольцо: с фактороперациями (). Корректность. Теорема о гомоморфизме.

    Теорема о гомоморфизме. Пусть — кольца и ; тогда .

  • Прямое произв.-е колец: с покомпонент. операциями. Характеристика кольца : , если ; иначе .
  • Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делителей нуля. Тело: .
  • Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2  Кольца многочленов
  • Множество многочленов от переменной над кольцом : ; общий вид многочлена: ; операции в .
  • Степень и старший коэффициент многочлена. Лемма о степени многочлена. Делимость в ( — коммут. кольцо): .

    Лемма о степени многочлена. Пусть — кольцо без делителей нуля и ; тогда , а также .

  • Неприводимые многочл. ( — обл. цел.): . Пример: если — поле и , то .
  • Лемма о делении многочленов с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
    существуют единственные такие многочлены , что и (обозначения: и ).
  • Кольцо остатков по модулю многочлена ( — поле, ): . Утверждение: .
  • Сопост.-е многочлену полиномиал. функции — гомоморфизм (, ).
  • Сокращенная запись: . Корень многочлена в кольце : . Теорема Безу. Теорема о количестве корней многочлена.

    Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).

    Теорема о количестве корней многочлена. Пусть — область целостности и ; тогда , а также,
    если , то существует такой элемент , что (и, значит, — инъекция).

  • Теорема Виета. Пусть — кольцо, , и ; тогда для
    любых выполнено (в частности, и ).
1.3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, и ).

  • Тригонометрическая запись: . Группа корней -й степ. из : .
  • Первообразные корни -й степени из . Корни -й степени из : .
  • «Основная теорема алгебры»: — алгебраически замкнутое поле, то есть (без доказ.-ва; см. § 3 главы 6 в [3]).
  • Теорема о неприводимых многочленах над полями R и C.
    (1) Пусть , и ; тогда .
    (2) и .
1.3.4  Тело кватернионов
  • Кольцо кватернионов: , где , а также , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Чистые кватернионы: . Скалярное произвед.-е, векторное произвед.-е, норма в : , , .
  • Утверждение: пусть ; тогда . Сопряжение: . Модуль: .
  • Теорема о свойствах кватернионов.
    (1) Для любых выполнено и, если , то (и, значит, — тело).
    (2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от кватерниона : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых и выполнено (и, значит, ).

  • Теорема об описании изометрий двумерного и трехмерного пространств.
    (1) Пусть ; тогда — поворот вокруг нуля на угол против часовой стрелки.
    (1') (доказательство только включения ).
    (2) Пусть и ; тогда — поворот вокруг оси с направл. вектором на угол против часовой стрелки.
    (2') (доказательство только включения ).