Алгебра phys 1 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 31: Строка 31:
  
 
<h5>1.4.4&nbsp; Производная многочлена, интерполяция, рациональные дроби</h5>
 
<h5>1.4.4&nbsp; Производная многочлена, интерполяция, рациональные дроби</h5>
<ul><li>Сопоставление многочлену формальной производной <math>\biggl(\!\begin{align}'\,\colon R[x]&\to R[x]\\f_nx^n+\ldots+f_0&\mapsto nf_nx^{n-1}+\ldots+f_1\end{align}\!\biggr)</math>. Лемма о свойствах формальной производной.
+
<ul><li>Производная многочлена: <math>(f_nx^n+\ldots+f_0)'\!=nf_nx^{n-1}+\ldots+f_1</math>. <u>Правило Лейбница.</u> <i>Пусть <math>R</math> — кольцо и <math>f,g\in R[x]</math>; тогда <math>(fg)'\!=f'g+f\,g'</math>.</i>
<p><u>Лемма о свойствах формальной производной.</u> <i>Пусть <math>R</math> — кольцо; тогда для любых <math>f,g\in R[x]</math> и <math>r\in R</math> выполнено <math>(f+g)'=f'\!+g'</math> (и, значит,<br>отображение <math>\,'</math> — эндоморфизм группы <math>R[x]^+</math>) и <math>(rf)'=rf'</math>, а также <math>(fg)'=f'g+f\,g'</math> (это правило Лейбница).</i></p>
+
<li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)</math> (<math>\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>). Теорема о кратных корнях.
<li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)\;\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>. Теорема о кратных корнях.
+
 
<p><u>Теорема о кратных корнях.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f\in R[x]</math>, <math>r\in R</math> и <math>k\in\mathbb N</math>; тогда<br>(1) если <math>r</math> — корень кратности не меньше <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности не меньше <math>k-1</math> многочлена <math>f'</math>;<br>(2) если <math>R</math> — область целостности, <math>\mathrm{char}\,R</math> не делит <math>k</math> и <math>r</math> — корень кратности <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности <math>k-1</math> многочлена <math>f'</math>;<br>(3) <math>r</math> — кратный корень многочлена <math>f</math> (то есть корень кратности не меньше <math>2</math>), если и только если <math>r</math> — корень многочленов <math>f</math> и <math>f'</math>.</i></p>
 
<p><u>Теорема о кратных корнях.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f\in R[x]</math>, <math>r\in R</math> и <math>k\in\mathbb N</math>; тогда<br>(1) если <math>r</math> — корень кратности не меньше <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности не меньше <math>k-1</math> многочлена <math>f'</math>;<br>(2) если <math>R</math> — область целостности, <math>\mathrm{char}\,R</math> не делит <math>k</math> и <math>r</math> — корень кратности <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности <math>k-1</math> многочлена <math>f'</math>;<br>(3) <math>r</math> — кратный корень многочлена <math>f</math> (то есть корень кратности не меньше <math>2</math>), если и только если <math>r</math> — корень многочленов <math>f</math> и <math>f'</math>.</i></p>
 
<li><u>Теорема об интерполяции.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>c_1,\ldots,c_n,e_1,\ldots,e_n\in K</math> и <math>c_1,\ldots,c_n</math> попарно различны; тогда существует единственный<br>такой многочлен <math>f\in K[x]</math>, что <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(f(c_i)=e_i\bigr)</math> и <math>\deg f<n</math>, и этот многочлен можно найти по следующим формулам:<br>(1) <math>f=\sum_{i=1}^ne_il_i</math>, где <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(l_i=\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})\cdot(x-c_{i+1})\cdot\ldots\cdot(x-c_n)}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})\cdot(c_i-c_{i+1})\cdot\ldots\cdot(c_i-c_n)}\biggr)</math> (это интерполяционная формула Лагранжа);<br>(2) <math>f=f_n</math>, где <math>f_0=0</math> и <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(f_i=f_{i-1}+\bigl(e_i-f_{i-1}(c_i)\bigr)\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})}\biggr)</math> (это интерполяционная формула Ньютона).</i>
 
<li><u>Теорема об интерполяции.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>c_1,\ldots,c_n,e_1,\ldots,e_n\in K</math> и <math>c_1,\ldots,c_n</math> попарно различны; тогда существует единственный<br>такой многочлен <math>f\in K[x]</math>, что <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(f(c_i)=e_i\bigr)</math> и <math>\deg f<n</math>, и этот многочлен можно найти по следующим формулам:<br>(1) <math>f=\sum_{i=1}^ne_il_i</math>, где <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(l_i=\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})\cdot(x-c_{i+1})\cdot\ldots\cdot(x-c_n)}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})\cdot(c_i-c_{i+1})\cdot\ldots\cdot(c_i-c_n)}\biggr)</math> (это интерполяционная формула Лагранжа);<br>(2) <math>f=f_n</math>, где <math>f_0=0</math> и <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(f_i=f_{i-1}+\bigl(e_i-f_{i-1}(c_i)\bigr)\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})}\biggr)</math> (это интерполяционная формула Ньютона).</i>
Строка 44: Строка 43:
 
<li>Метод неопределенных коэфф.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).</ul>
 
<li>Метод неопределенных коэфф.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).</ul>
  
<h5>1.4.5&nbsp; Кольца матриц</h5>
+
<h5>1.4.5&nbsp; Матрицы, столбцы, строки</h5>
 
<ul><li>Множества матриц, столбцов и строк: <math>\mathrm{Mat}(p,n,R)</math>, <math>R^n\!=\mathrm{Mat}(n,1,R)</math> и <math>R_n\!=\mathrm{Mat}(1,n,R)</math>. Сложение матриц и умножение матриц на скаляры.
 
<ul><li>Множества матриц, столбцов и строк: <math>\mathrm{Mat}(p,n,R)</math>, <math>R^n\!=\mathrm{Mat}(n,1,R)</math> и <math>R_n\!=\mathrm{Mat}(1,n,R)</math>. Сложение матриц и умножение матриц на скаляры.
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умнож.-я. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>.
+
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения. Кольцо <math>\mathrm{Mat}(n,R)=\mathrm{Mat}(n,n,R)</math>, группа <math>\mathrm{GL}(n,R)=\mathrm{Mat}(n,R)^\times</math>.
<li>Диагональные и скалярные матрицы. Верхнетреугольные, нижнетреугольные и треугольные матрицы. Блочные и блочно-треугольные матрицы.
+
<li>Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
 
<li>Матрицы, столбцы, строки с одной единицей: <math>(\underline e_i^j)^k_l=\delta_i^k\delta^j_l</math>, <math>(\underline e_i)^k=\delta_i^k</math>, <math>(\underline e^j)_l=\delta^j_l</math>. Утверждение: <i><math>\underline e_i^j\cdot\underline e_k^l=\delta^j_k\underline e_i^l</math>, <math>\underline e_i\cdot\underline e^j=\underline e_i^j</math>, <math>\underline e^j\cdot\underline e_i=\delta_i^j</math></i>.
 
<li>Матрицы, столбцы, строки с одной единицей: <math>(\underline e_i^j)^k_l=\delta_i^k\delta^j_l</math>, <math>(\underline e_i)^k=\delta_i^k</math>, <math>(\underline e^j)_l=\delta^j_l</math>. Утверждение: <i><math>\underline e_i^j\cdot\underline e_k^l=\delta^j_k\underline e_i^l</math>, <math>\underline e_i\cdot\underline e^j=\underline e_i^j</math>, <math>\underline e^j\cdot\underline e_i=\delta_i^j</math></i>.
 
<li>Строки матрицы <math>a</math>: <math>a^i_\bullet=\underline e^i\cdot a</math>. Столбцы матрицы <math>a</math>: <math>a^\bullet_j=a\cdot\underline e_j</math>. Утверждение: <i><math>(b\cdot a)^i_\bullet=b^i_\bullet\cdot a=\sum_{j=1}^pb^i_j\,a^j_\bullet</math>, а также <math>(b\cdot a)^\bullet_k=b\cdot a^\bullet_k=\sum_{j=1}^pb^\bullet_j\,a^j_k</math></i>.
 
<li>Строки матрицы <math>a</math>: <math>a^i_\bullet=\underline e^i\cdot a</math>. Столбцы матрицы <math>a</math>: <math>a^\bullet_j=a\cdot\underline e_j</math>. Утверждение: <i><math>(b\cdot a)^i_\bullet=b^i_\bullet\cdot a=\sum_{j=1}^pb^i_j\,a^j_\bullet</math>, а также <math>(b\cdot a)^\bullet_k=b\cdot a^\bullet_k=\sum_{j=1}^pb^\bullet_j\,a^j_k</math></i>.
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: <i>пусть <math>R</math> — коммут. кольцо, <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math>; тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math></i>.
+
<li>Линейные операторы между <math>R^n</math> и <math>R^p</math> (координатное определение): <math>\bigl\{\bigl(v\mapsto a\cdot v\bigr)\mid a\in\mathrm{Mat}(p,n,R)\bigr\}</math>. Теорема о линейных операторах и матрицах.
<li>Симметрич. и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math> и <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.
+
<p><u>Теорема о линейных операторах и матрицах.</u> <i>Пусть <math>R</math> — кольцо и <math>n,p\in\mathbb N_0</math>; тогда отобр.
<li>След квадр. матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Утверждение: <i>пусть <math>R</math> — коммут. кольцо, <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(n,p,R)</math>; тогда <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math></i>.</ul>
+
<math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,R)&\to\bigl\{\bigl(v\mapsto a\cdot v\bigr)\mid a\in\mathrm{Mat}(p,n,R)\bigr\}\\a&\mapsto\bigl(v\mapsto a\cdot v\bigr)\end{align}\!\biggr)</math> —<br>изоморфизм групп по сложению и, если <math>n=p</math>, то это отображение — изоморфизм колец.</i></p>
 +
<li>Транспонирование матрицы <math>a</math>: <math>(a^\mathtt T)^i_j=a^j_i</math>. След квадратной матрицы <math>a</math>: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Теорема о транспонировании, следе и произведении матриц.
 +
<p><u>Теорема о транспонировании, следе и произведении матриц.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>n,p,r\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,R)</math> и <math>b\in\mathrm{Mat}(r,p,R)</math>;<br>тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math> и, если <math>n=r</math>, то <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math>.</i></p>
 +
<li>Симметрич. и антисимм. матрицы: <math>\mathrm{SMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=a\}</math> и <math>\mathrm{AMat}(n,R)=\{a\in\mathrm{Mat}(n,R)\mid a^\mathtt T\!=-a\,\land\,a^1_1=\ldots=a^n_n=0\}</math>.</ul>
  
 
<h3>1.5&nbsp; Группы (часть 2)</h3>
 
<h3>1.5&nbsp; Группы (часть 2)</h3>
Строка 64: Строка 66:
 
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это отображение — сюръекция и <math>|\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}|=\frac{n!}2</math>;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
 
<p><u>Теорема о свойствах знака.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда<br>(1) отображение <math>\biggl(\!\begin{align}\mathrm S_n\!&\to\{1,-1\}\\u&\mapsto\mathrm{sgn}(u)\end{align}\!\biggr)</math> — гомоморфизм групп и, если <math>n\ge2</math>, то это отображение — сюръекция и <math>|\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}|=\frac{n!}2</math>;<br>(2) для любых таких <math>i,j\in\{1,\ldots,n\}</math>, что <math>i<j</math>, выполнено <math>|\mathrm{inv}((i\;\,j))|=2(j-i)-1</math> и <math>\mathrm{sgn}((i\;\,j))=-1</math>;<br>(3) для любых <math>m\in\{1,\ldots,n\}</math> и попарно различных чисел <math>i_1,\ldots,i_m\in\{1,\ldots,n\}</math> выполнено <math>\mathrm{sgn}((i_1\;\ldots\;i_m))=(-1)^{m-1}</math>;<br>(4) для любых <math>u\in\mathrm S_n</math> выполнено <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>.</i></p>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
 
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только если<br>(неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> (то есть цикловые типы перестановок <math>s</math> и <math>\breve s</math>) равны.</i>
<li><u>Теорема о задании симметрических групп коксетеровскими образующими и соотношениями.</u> <i>Пусть <math>n\in\mathbb N_0</math>; тогда <math>\,\mathrm S_n\cong\langle d_1,\ldots,d_{n-1}\!\mid d_1^2,\ldots,d_{n-1}^2,</math><br><math>(d_1d_2)^3,(d_2d_3)^3,\ldots,(d_{n-2}d_{n-1})^3,(d_1d_3)^2,(d_1d_4)^2,\ldots,(d_1d_{n-1})^2,(d_2d_4)^2,(d_2d_5)^2,\ldots,(d_2d_{n-1})^2,\ldots,(d_{n-3}d_{n-1})^2\rangle</math>.</i></ul>
+
<li>Задание группы <math>\mathrm S_n</math> коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: <math>\mathrm S_3\cong\langle d_1,d_2\!\mid d_1^2,d_2^2,(d_1d_2)^3\rangle</math>, задание группы <math>\mathrm S_4</math>.</ul>
  
 
<h5>1.5.2&nbsp; Группы матриц</h5>
 
<h5>1.5.2&nbsp; Группы матриц</h5>
Строка 74: Строка 76:
 
<li>Ортогональная группа: <math>\mathrm O(n)=\{a\in\mathrm{Mat}(n,\mathbb R)\mid a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb R)</math>. Специальная ортогон. группа: <math>\mathrm{SO}(n)=\mathrm{SL}(n,\mathbb R)\cap\mathrm O(n)\trianglelefteq\mathrm O(n)</math>.
 
<li>Ортогональная группа: <math>\mathrm O(n)=\{a\in\mathrm{Mat}(n,\mathbb R)\mid a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb R)</math>. Специальная ортогон. группа: <math>\mathrm{SO}(n)=\mathrm{SL}(n,\mathbb R)\cap\mathrm O(n)\trianglelefteq\mathrm O(n)</math>.
 
<li>Унитарная группа: <math>\mathrm U(n)=\{a\in\mathrm{Mat}(n,\mathbb C)\mid\overline a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb C)</math>. Специальная унитарная группа: <math>\mathrm{SU}(n)=\mathrm{SL}(n,\mathbb C)\cap\mathrm U(n)\trianglelefteq\mathrm U(n)</math>.
 
<li>Унитарная группа: <math>\mathrm U(n)=\{a\in\mathrm{Mat}(n,\mathbb C)\mid\overline a^\mathtt T\!\cdot a=\mathrm{id}_n\}\le\mathrm{GL}(n,\mathbb C)</math>. Специальная унитарная группа: <math>\mathrm{SU}(n)=\mathrm{SL}(n,\mathbb C)\cap\mathrm U(n)\trianglelefteq\mathrm U(n)</math>.
<li>Аффинная линейн. группа: <math>\mathrm{AGL}(n,K)=\{\Bigl(\begin{smallmatrix}a&v\\0&1\end{smallmatrix}\Bigr)\!\in\mathrm{Mat}(n+1,K)\mid a\in\mathrm{GL}(n,K),\,v\in K^n\}\le\mathrm{GL}(n+1,K)</math> (рассматр.-ются блочные матрицы).
+
<li>Аффинная линейная группа: <math>\mathrm{AGL}(n,K)=\{\Bigl(\begin{smallmatrix}a&w\\0&1\end{smallmatrix}\Bigr)\!\mid a\in\mathrm{GL}(n,K),\,w\in K^n\}\le\mathrm{GL}(n+1,K)</math>. Геометрический смысл: <math>\Bigl(\begin{smallmatrix}a&w\\0&1\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}v\\1\end{smallmatrix}\Bigr)=\Bigl(\begin{smallmatrix}a\cdot v\,+\,w\\1\end{smallmatrix}\Bigr)</math>.
 
<li><u>Теорема о представлении комплексных чисел при помощи вещественных матриц.</u><br><i>(1) Отображение <math>\Biggl(\!\begin{align}\mathbb C&\to\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R\bigr\}\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math> — изоморфизм колец.<br>(2) <math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm S^1\!&\to\mathrm{SO}(2)\\\cos\varphi+\sin\varphi\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — изоморфизм групп.</i></ul>
 
<li><u>Теорема о представлении комплексных чисел при помощи вещественных матриц.</u><br><i>(1) Отображение <math>\Biggl(\!\begin{align}\mathbb C&\to\bigl\{\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\!\mid\alpha,\beta\in\mathbb R\bigr\}\\\alpha+\beta\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\alpha&-\beta\\\beta&\alpha\end{smallmatrix}\Bigr)\end{align}\!\Biggr)</math> — изоморфизм колец.<br>(2) <math>\mathrm{SO}(2)=\bigl\{\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\!\mid\varphi\in[0;2\pi)\bigr\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm S^1\!&\to\mathrm{SO}(2)\\\cos\varphi+\sin\varphi\,\mathrm i&\mapsto\!\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — изоморфизм групп.</i></ul>
  
Строка 98: Строка 100:
 
<p><u>Теорема о коммутанте.</u> <i>Пусть <math>G</math> — группа и <math>H\trianglelefteq G</math>; тогда группа <math>G/H</math> абелева, если и только если <math>[G,G]\subseteq H</math> (и, значит, <math>G/[G,G]</math> абелева).</i></p>
 
<p><u>Теорема о коммутанте.</u> <i>Пусть <math>G</math> — группа и <math>H\trianglelefteq G</math>; тогда группа <math>G/H</math> абелева, если и только если <math>[G,G]\subseteq H</math> (и, значит, <math>G/[G,G]</math> абелева).</i></p>
 
<li>Простая группа: <math>|\{H\subseteq G\mid H\trianglelefteq G\}|=2</math>. Примеры: группы <math>\mathrm A_n</math> (<math>n\geq5</math>) и <math>\mathrm{SL}(2,K)/\{\mathrm{id}_2,-\mathrm{id}_2\}</math> (<math>K</math> — поле и <math>|K|\geq4</math>) простые (без доказат.-ва).
 
<li>Простая группа: <math>|\{H\subseteq G\mid H\trianglelefteq G\}|=2</math>. Примеры: группы <math>\mathrm A_n</math> (<math>n\geq5</math>) и <math>\mathrm{SL}(2,K)/\{\mathrm{id}_2,-\mathrm{id}_2\}</math> (<math>K</math> — поле и <math>|K|\geq4</math>) простые (без доказат.-ва).
<li>Полупрямое произв.-е <math>F\;\underset\pi\leftthreetimes\,H</math> относит. действия <math>\pi</math> (<math>\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))</math>): <math>F\times H</math> с бинарной операцией <math>(f_1,h_1)\,(f_2,h_2)=(f_1\,\pi_{h_1}\!(f_2),h_1\,h_2)</math>.
+
<li>Полупрямое произвед.-е <math>F\;\underset\pi\leftthreetimes\,H</math> относ.-но действия <math>\pi</math> (<math>\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))</math>): <math>F\times H</math> с бинарной операцией <math>(f_1,h_1)\,(f_2,h_2)=(f_1\,\pi_{h_1}\!(f_2),h_1\,h_2)</math>.
<li>Утверждение: <i><math>\biggl(\!\begin{align}F\;\underset\pi\leftthreetimes\,H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизм групп</i>. Пример: <math>\mathrm{AGL}(n,K)\cong(K^n)^+\,\underset\pi\leftthreetimes\,\mathrm{GL}(n,K)</math>, где <math>\forall\,a\in\mathrm{GL}(n,K),\,v\in K^n\,\bigl(\pi_a(v)=a\cdot v\bigr)</math>.
+
<li>Утверждение: <i><math>\biggl(\!\begin{align}F\;\underset\pi\leftthreetimes\,H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизм групп</i>. Пример: <math>\mathrm{AGL}(n,K)\cong(K^n)^+\,\underset\pi\leftthreetimes\,\mathrm{GL}(n,K)</math>, где <math>\forall\,a\in\mathrm{GL}(n,K),\,w\in K^n\,\bigl(\pi_a(w)=a\cdot w\bigr)</math>.
 
<li><u>Теорема о полупрямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Hom}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Iso}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то в пункте (2) условие "<math>G=FH\!</math>" можно заменить на условие "<math>\,|G|=|F|\,|H|</math>".</i></ul>
 
<li><u>Теорема о полупрямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Hom}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\exists\,\pi\in\mathrm{Hom}(H,\mathrm{Aut}(F))\;\bigl(\mathrm{mult}\in\mathrm{Iso}(F\;\underset\pi\leftthreetimes\,H,G)\bigr)\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,h\in H\;\bigl(h\,F\,h^{-1}\!\subseteq F\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то в пункте (2) условие "<math>G=FH\!</math>" можно заменить на условие "<math>\,|G|=|F|\,|H|</math>".</i></ul>

Версия 18:00, 8 октября 2017

1  Основы алгебры

1.4  Кольца (часть 2)

1.4.1  Делимость в коммутативных кольцах
  • Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
  • Понятия и в коммут. кольце : и .
  • Нормировка и (если они не ) в и : и — в , многочлены и нормированы — в .
  • Главный идеал — идеал, порожденный одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
  • Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
    (1) ; ; ; ;
    (2) если — область целостности, то , а также ;
    (3) и, если идеал главный, то ;
    (4) если в кольце все идеалы главные, то .
  • Неприводимые и простые эл.-ты: и .
  • Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
    (1) если — область целостности, то ;
    (2) если в кольце все идеалы главные, то ;
    (3) для любых следующие утверждения эквивалентны: (у1) и (у2) — область целостности;
    (4) если — область целостности, в которой все идеалы главные, то для любых следующие утверждения эквивалентны:
    (у1) , (у2) , (у3) — область целостности и (у4) — поле.
1.4.2  Евклидовы кольца и факториальные кольца
  • Евклидова норма на — такая функция (), что относ.-но можно делить с остатком и не убывает относ.-но делимости.
  • Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
  • Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
    (1) для любых и выполнено ;
    (2) не существует такой бесконечной последовательности элементов кольца , что для любых выполнено ;
    (3) если , то для любых выполнено ;
    (4) в кольце все идеалы главные, а также .
  • Факториальное кольцо — область целостности с -единственным разложением любого ненулевого элемента в произведение неприводимых элементов.
  • Примеры: — факториальное кольцо (это основная теорема арифметики); если кольцо факториально, то и факториально (без доказательства).
  • Теорема о факториальности евклидовых колец.
    (1) Пусть — такая область целостности, что не существует такой бесконечной последовательности элементов кольца , что
    для любых выполнено , и, кроме того, ; тогда — факториальное кольцо.
    (2) Евклидовы кольца являются факториальными кольцами (и, значит, кольца и , где — поле, факториальны).
  • Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
    и , где , , попарно неассоциированы и ; тогда
    (1) и ;
    (2) и .
1.4.3  Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
  • Соотношение Безу для эл.-тов и евклид. кольца: , где и — коэффициенты Безу. Нахождение в кольце .
  • Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда если , то .
  • Расширенный алгоритм Евклида в евклидовом кольце: ; на -м шаге ; тогда .
  • Китайская теорема об остатках для целых чисел. Пусть , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Китайская теорема об остатках для многочленов. Пусть — поле, , и попарно взаимно просты (то есть
    ); тогда отображение — изоморфизм колец.
  • Функция Эйлера от : . Пример: если и , то . Утверждение: .
  • Теорема о свойствах функции Эйлера.
    (1) Пусть , и ; тогда (это теорема Эйлера).
    (2) Пусть и ; тогда .
    (3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
    ; тогда .
1.4.4  Производная многочлена, интерполяция, рациональные дроби
  • Производная многочлена: . Правило Лейбница. Пусть — кольцо и ; тогда .
  • Корень кратности многочлена : (). Теорема о кратных корнях.

    Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
    (1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
    (2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
    (3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и .

  • Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный
    такой многочлен , что и , и этот многочлен можно найти по следующим формулам:
    (1) , где (это интерполяционная формула Лагранжа);
    (2) , где и (это интерполяционная формула Ньютона).
  • Поле частных: ; и , .
  • Лемма о поле частных. Отождествление и . Примеры: , — поле рацион.-х дробей.

    Лемма о поле частных. Пусть — область целостности; тогда отображение — инъективный гомоморфизм колец, а также
    для любых и выполнено (и, значит, ).

  • Несократимая запись: (, нормирован). Правильные дроби: (). Лемма о несократимой записи и правильных дробях.

    Лемма о несократимой записи и правильных дробях. Пусть — поле и ; тогда
    (1) существуют единственные такие многочлены , что , и многочлен нормирован;
    (2) существуют единственные такие многочлен и правильная дробь , что .

  • Примарные и простейшие дроби: (, нормир., , ) и (, нормир., , ).
  • Метод неопределенных коэфф.-тов для разложения правильной дроби в сумму простейших дробей (док.-во корректности см. в п. 3 в § 4 главы 5 в [3]).
1.4.5  Матрицы, столбцы, строки
  • Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
  • Умножение матриц: . Внешняя ассоциативность умножения. Кольцо , группа .
  • Матрицы специального вида: диагональные, скалярные, верхнетреугольные, нижнетреугольные, треугольные. Блочные и блочно-треугольные матрицы.
  • Матрицы, столбцы, строки с одной единицей: , , . Утверждение: , , .
  • Строки матрицы : . Столбцы матрицы : . Утверждение: , а также .
  • Линейные операторы между и (координатное определение): . Теорема о линейных операторах и матрицах.

    Теорема о линейных операторах и матрицах. Пусть — кольцо и ; тогда отобр.
    изоморфизм групп по сложению и, если , то это отображение — изоморфизм колец.

  • Транспонирование матрицы : . След квадратной матрицы : . Теорема о транспонировании, следе и произведении матриц.

    Теорема о транспонировании, следе и произведении матриц. Пусть — коммутативное кольцо, , и ;
    тогда и, если , то .

  • Симметрич. и антисимм. матрицы: и .

1.5  Группы (часть 2)

1.5.1  Симметрические группы
  • Транспозиции: (, ). Фундаментальные транспозиции: (). Число циклов в перестановке : .
  • Множество инверсий последовательности : . Лемма о количестве инверсий.

    Лемма о количестве инверсий. Пусть , , и ; тогда
    (1) ;
    (2) если , то , и, если , то .

  • Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа ,
    упорядоченные по неубыванию (то есть ); тогда
    (1) существуют такие фундаментальные транспозиции , что ;
    (2) для любых из существования таких фундаментальных транспозиций , что ,
    следует, что , а также в том случае, когда числа попарно различны, что .
  • Знак последовательности : , если числа попарно различны; иначе .
  • Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: .

    Теорема о свойствах знака. Пусть ; тогда
    (1) отображение — гомоморфизм групп и, если , то это отображение — сюръекция и ;
    (2) для любых таких , что , выполнено и ;
    (3) для любых и попарно различных чисел выполнено ;
    (4) для любых выполнено .

  • Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
    (неупорядоченные) наборы длин циклов перестановок и (то есть цикловые типы перестановок и ) равны.
  • Задание группы коксетеровскими образующими и соотношениями (без доказат.-ва). Примеры: , задание группы .
1.5.2  Группы матриц
  • Определитель квадр. матрицы над коммут. кольцом: . Определитель и расстановки ладей на шахматной доске.
  • Анонс: пусть — поле; тогда и отобр. — гомоморфизм моноидов по умножению.
  • Примеры: , . Определитель и объем. Теорема о свойствах определителя.

    Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
    (1) для любых , и выполнено
    ;
    (2) для любых таких , что не попарно различны, выполнено ;
    (3) для любых выполнено ;
    (4) для любых , , и выполнено .

  • Специальная линейн. группа: . Утверждение: .
  • Ортогональная группа: . Специальная ортогон. группа: .
  • Унитарная группа: . Специальная унитарная группа: .
  • Аффинная линейная группа: . Геометрический смысл: .
  • Теорема о представлении комплексных чисел при помощи вещественных матриц.
    (1) Отображение — изоморфизм колец.
    (2) и отображение — изоморфизм групп.
1.5.3  Действия групп на множествах
  • Действие группы на мн.-ве — гомоморфизм моноидов . Утверждение: . Обозначение: .
  • Примеры: группа действует на , группы матриц действуют на , группа действует на сдвигами (где ) и на сопряжениями.
  • Динамическая система с дискретнымнепрерывным временем (каскадпоток) — множество с действием группы группы . Теорема Кэли.

    Теорема Кэли. Пусть — группа; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
    (2) отображение — инъективный гомоморфизм групп.

  • -Множество — множество с действием группы . Гомоморфизмы -множеств: .
  • Орбита точки : . Утверждение: , где . Разбиение на орбиты: .
  • Транзитивное действие (однородное -мн.-во): . Стабилизатор: . Точное действие: .
  • Свободное действие (своб. -мн.-во): . Торсор над — однородное свободное -мн.-во ().
  • Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .

    Теорема о классах смежности по стабилизатору. Пусть — группа, -множество и ; тогда
    (1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть ;
    (2) если , то .

    Лемма Бернсайда. Пусть — группа, -множество и ; тогда .

1.5.4  Автоморфизмы, коммутант, полупрямое произведение групп
  • Группа автоморфизмов: . Пример: . Группа внутр.-х автоморф.-в: .
  • Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморф.-в: .

    Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
    его образ есть (и, значит, ) и, кроме того, .

  • Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
  • Утверждение: . Теорема о коммутанте. Пример: (док.-во только включения ). Абелианизация группы : .

    Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).

  • Простая группа: . Примеры: группы () и ( — поле и ) простые (без доказат.-ва).
  • Полупрямое произвед.-е относ.-но действия (): с бинарной операцией .
  • Утверждение: — гомоморфизм групп. Пример: , где .
  • Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "".