Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 41: Строка 41:
 
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>.
 
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>.
 
<li><u>Теорема об определителе матрицы Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, <math>m\in\mathbb N</math>,<br><math>v_1,\ldots,v_m\in V</math>, <math>d=(v_1,\ldots,v_m)</math>, <math>d'=(v_1,\ldots,v_{m-1})</math>, <math>U'=\langle v_1,\ldots,v_{m-1}\rangle</math> и форма <math>\sigma|_{U'\times U'}</math> невырождена; обозначим через <math>\hat v_m</math> вектор<br><math>v_m-\mathrm{proj}_{U'}(v_m)</math>; тогда <math>\det\sigma_{d,d}=\det\sigma_{d',d'}\!\cdot\sigma(\hat v_m,\hat v_m)</math>.</i>
 
<li><u>Теорема об определителе матрицы Грама.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, <math>m\in\mathbb N</math>,<br><math>v_1,\ldots,v_m\in V</math>, <math>d=(v_1,\ldots,v_m)</math>, <math>d'=(v_1,\ldots,v_{m-1})</math>, <math>U'=\langle v_1,\ldots,v_{m-1}\rangle</math> и форма <math>\sigma|_{U'\times U'}</math> невырождена; обозначим через <math>\hat v_m</math> вектор<br><math>v_m-\mathrm{proj}_{U'}(v_m)</math>; тогда <math>\det\sigma_{d,d}=\det\sigma_{d',d'}\!\cdot\sigma(\hat v_m,\hat v_m)</math>.</i>
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>mnr_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>mnr_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{mnr_i}{mnr_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i>
+
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>cm_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>cm_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\sigma(\hat e_i,\hat e_i)=\frac{cm_i}{cm_{i-1}}</math>,<br>а также <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i>
 
<li>Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul>
 
<li>Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul>
  
Строка 49: Строка 49:
 
<li>Мн.-ва полож. и отриц. опред. матриц: <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{<0}(n,K)=-\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>.
 
<li>Мн.-ва полож. и отриц. опред. матриц: <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{<0}(n,K)=-\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>.
 
<li>Утверждение: <i>пусть <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math> и <math>U\le V</math>; тогда <math>U\cap U^\perp\!=\{0\}</math> и, если <math>\dim U<\infty</math>, то форма <math>\sigma|_{U\times U}</math> невырождена (и, значит, <math>V=U\oplus U^\perp</math>)</i>.
 
<li>Утверждение: <i>пусть <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math> и <math>U\le V</math>; тогда <math>U\cap U^\perp\!=\{0\}</math> и, если <math>\dim U<\infty</math>, то форма <math>\sigma|_{U\times U}</math> невырождена (и, значит, <math>V=U\oplus U^\perp</math>)</i>.
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>;<br>для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>mnr_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>; тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(mnr_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,mnr_i>0\bigr)</math>.</i>
+
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>;<br>для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>cm_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>; тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(cm_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,cm_i>0\bigr)</math>.</i>
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
 
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OOB}(V,\sigma)</math>; тогда<br>(1) <math>\mathrm{ind}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{ind}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>);<br>(3) <math>\mathrm{ind}_{>0}(\sigma)+\mathrm{ind}_{<0}(\sigma)=\mathrm{rk}(\sigma)</math>.</i>
 
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OOB}(V,\sigma)</math>; тогда<br>(1) <math>\mathrm{ind}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{ind}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>);<br>(3) <math>\mathrm{ind}_{>0}(\sigma)+\mathrm{ind}_{<0}(\sigma)=\mathrm{rk}(\sigma)</math>.</i>

Версия 20:00, 8 сентября 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых и выполнено ;
    (2) для любых , обозначая через отображение , имеем следующие факты:
    — симметричная билинейная форма (то есть ), а также ;
    (3) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых и выполнено ;
    (2) для любых , обозначая через отображение , имеем
    следующие факты: — полуторалинейная форма (то есть ), а также ;
    (3) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Нахождение координат вектора при помощи невырожд. формы: . Теорема о базисах и невырожденных формах.

    Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.

  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то , а также и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа. Матричная формулировка теоремы Лагранжа. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Теорема об определителе матрицы Грама. Пусть — поле с инволюцией, — векторное пространство над полем , , ,
    , , , и форма невырождена; обозначим через вектор
    ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено и ,
    а также (это индуктивная формула для нахождения векторов ).
  • Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Геометрия в векторных пространствах над или (часть 1)

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Утверждение: пусть и ; тогда и, если , то форма невырождена (и, значит, ).
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Метрика: . Теорема об ортогональном проектировании. Расст.-е между вектором и подпр.-вом: .

    Теорема об ортогональном проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) для любых и выполнено и (это неравенство Бесселя).

  • Метод наименьших квадратов: замена системы , где , и , на систему .
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидовопсевдоунитарное пр.-во сигнатуры — кон.-мерн. вект. пр.-во над с невыр. ¯-симметр. ¯-билин. формой сигнатуры .

3.3  Линейные операторы и ¯-билинейные формы

3.3.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (2) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

3.3.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов (, или ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , а также и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , , форма невырождена,
    и ; тогда , а также и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и ;
    (3) если и или , то .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .
3.3.3  Спектральная теория в унитарных пространствах
  • Теорема о собственных векторах нормального оператора. Пусть — евклидово или унитарное пространство и ; тогда
    для любых выполнено , а также для любых таких , что , выполнено .
  • Спектральная теорема для унитарных пространств. Пусть — унитарное пространство и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для унитарных пространств. Пусть — унитарное пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для унитарных пространств. Пусть и ; тогда
    (1) — диагональная матрица;
    (2) — диагональная матрица с числами вида , где , на диагонали;
    (3) — диагональная матрица с вещественными числами на диагонали;
    (4) — диагональная матрица с числами вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Ортогональный проектор: . Спектральное разложение нормального оператора : .
  • Теорема о собственных числах и собственных векторах автоморфизмов, симметричных, антисимметричных и положительно определенных операторов.
    (1) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , , а также
    для любых двух различных собственных чисел и оператора выполнено .
    (2) Пусть — предгильбертово пространство над полем и ; тогда для любого собственного числа
    оператора выполнено , , , а также для любых двух различных
    собственных чисел и оператора выполнено .
  • Ортогональные многочлены как собственные функции формально самосопряженных дифференциальных операторов (см. пункт 10 в § 8 части 2 в [5]).
3.3.4  Спектральная теория в евклидовых пространствах
  • -Диагональная матрица — блочно-диагональная матрица над полем с блоками размера и блоками вида , где и .
  • -Спектр линейного оператора в конечномерном пр.-ве над : . Пример: .
  • Лемма о линейном операторе с пустым спектром над полем R. Пусть — евклидово пространство, , и ; тогда
    (1) существует такое подпространство пространства , что , и, если , то ;
    (2) если , то для любых выполнено .
  • Спектральная теорема для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Следствие из спектральной теоремы для евклидовых пространств. Пусть — евклидово пространство и ; тогда
    , , , .
  • Матричная формулировка спектральной теоремы для евклидовых пространств. Пусть и ; тогда
    (1) -диагональная матрица;
    (2) -диагон. матрица с числами , и блоками вида , где , на диагонали;
    (3) — диагональная матрица;
    (4) -диагональная матрица с числом и блоками вида , где , на диагонали;
    (5) — диагональная матрица с положительными числами на диагонали.
  • Усиленная теорема Лагранжа для евклидовых и унитарных пространств. Пусть — евклидово или унитарное пространство и ; тогда
    — диагональная матрица (то есть ).
  • Теорема Эйлера о вращениях. Пусть — евклидово пространство, , , , и ; тогда
    , и для любых выполнено (и, значит, — оператор вращения вокруг оси ).