LinuxKernelProgramming — различия между версиями
(→Сборка ядра 3.3.0-rc2) |
(→Сборка ядра 3.3.0-rc2) |
||
Строка 60: | Строка 60: | ||
<source lang="bash"> | <source lang="bash"> | ||
wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.3-rc2.tar.bz2 | wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.3-rc2.tar.bz2 | ||
− | + | sudo apt-get install bzip2 | |
tar -xjf linux-3.3-rc2.tar.bz2 | tar -xjf linux-3.3-rc2.tar.bz2 | ||
cd linux-3.3-rc2/ | cd linux-3.3-rc2/ | ||
mkdir -p ~/build/linux-3.3-rc2 | mkdir -p ~/build/linux-3.3-rc2 | ||
− | + | sudo apt-get install libncurses5-dev | |
make O=~/build/linux-3.3-rc2 nconfig | make O=~/build/linux-3.3-rc2 nconfig | ||
make O=~/build/linux-3.3-rc2 | make O=~/build/linux-3.3-rc2 |
Версия 04:13, 25 марта 2012
Лектор - Кринкин Кирилл Владимирович
Подготовка к работе
Все работы рекомендуется проводить в виртуальном окружении, для этого можно использовать VirtualBox.
Для сдачи работ должен использовать git на гуглкоде http://code.google.com/p/linux-kernel-course/
Для этого скачиваем ядро,
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
и откатываемся к коммиту c579bc7e316e7e3f3b56df5e17f623325caa9783
git reset --hard c579bc7e316e7e3f3b56df5e17f623325caa9783
а в конце отсылаем результаты домашней работы в формате, полученном командой
git format-patch c579bc7e316e7e3f3b56df5e17f623325caa9783
Либо, не откатываемся к коммиту, а делаем от него ветку
git checkout c579bc7e316e7e3f3b56df5e17f623325caa9783 -b spbau-lkp
и делаем патч
git format-patch master
Установка OpenSSH-Server в VirtualBox
Для того, чтобы получить возможность пользоваться буфером обмена (вставлять текст в консоль) и не ставить VirtualBox Guest Additions, можно установить в виртуальную машину OpenSSH-Server, и подключаться к нему любым SSH клиентом. Для этого необходимо добавить новую сетевую карту в виртуальную машину. Это делается в настройках, ДО ВКЛЮЧЕНИЯ виртуальной машины: в настройках нужно перейти на страницу с настройками сети, перейти на вкладку со вторым адаптером (первый адаптер используется виртуальной машиной для доступа к интернет через NAT) и выбрать подключение "Host-only adapter" (смотри пример на картинке).
Если VirtualBox выдает ошибку при выборе "Host-only Adapter", то вероятнее всего это связано с тем, что не установлен виртуальный адаптер. Добавить его можно в сетевых настройках VirtualBox (File->Preferences->Networks).
Теперь необходимо включить на этой сетевой карте возможность получить IP адрес по DHCP. Для этого нужно выполнить следующие две команды (предполагается, что в системе до этого была только одна сетевая карта):
echo 'allow-hotplug eth1' >> /etc/network/interfaces
echo 'iface eth1 inet dhcp' >> /etc/network/interfaces
и установить OpenSSH-Server
apt-get install openssh-server
Теперь можно из основной системы произвести подключение к виртуальной. Для этого нужно использовать SSH-клиент, такой как putty которому нужно сообщить IP адрес виртуальной машины (его можно узнать командой ifconfig, и, скорее всего, это будет 192.168.56.101).
Важно помнить, что по умолчанию SSH не позволяет подключаться, используя учётную запись root. Если необходимы права суперпользователя, в начале подключитесь используя свою учётную запись на виртуальной машине (приняв перед этим сертификат безопасности), а потом используйте su.
Так же рекомендуется в подпункте Translation пункта Window указывать UTF-8 в качестве Character set translation on received data - в частности, это необходимо для правильного отображения Midnight Commander.
Сборка ядра 3.3.0-rc2
Сборка ядра 3.3.0-rc2 (в соответствии с рекомендациями readme)
wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.3-rc2.tar.bz2
sudo apt-get install bzip2
tar -xjf linux-3.3-rc2.tar.bz2
cd linux-3.3-rc2/
mkdir -p ~/build/linux-3.3-rc2
sudo apt-get install libncurses5-dev
make O=~/build/linux-3.3-rc2 nconfig
make O=~/build/linux-3.3-rc2
sudo make O=~/build/linux-3.3-rc2 modules_install install
sudo update-initramfs -c -v -k 3.3.0-rc2
sudo update-grub2
shutdown -r now
Использование patch
Создание модулей для ядра Linux
Введение
Некоторые отличия Ядра от программ, выполняемых в пространстве пользователя:
- Ядро LINUX пишется с расчётом на компилятор GNU C (разработчики ориентируются на стандарт ISO C99). В коде можно использовать ассемблерные вставки (директива asm()), аннотацию ветвления (likely() - более вероятная ветвь, unlikely() - менее вероятная) и весьма странный кодстайл.
- Ядро не имеет доступа к стандартным библиотекам языка программирования C. Это сделано из соображений увеличения скорости выполнения и уменьшения объёма кода.
- Отсутствует защита памяти. Если обычная программа предпримет попытку некорректного обращения с памятью, то ядро сможет выгрузить такую программу, но если само ядро предпримет такую же попытку, то его будет некому проконтролировать. Так же важно помнить об отсутствии замещения страниц, т.е. каждому байту, используемому ядром, соответствует байт реальной физической памяти.
- В ядре используются только целочисленные вычисления. Это тоже сделано для ускорения работы, т.к. операции с плавающей точкой значительно более ресурсоёмки (в частности, активнее используются регистры CPU).
- Объём стека фиксирован, и обычно равен двум страницам памяти (8 Кбайт для x86, и 16 Кбайт для x64). По этой причине не рекомендуется использовать рекурсию.
- Важным требованием является переносимость - код должен компилироваться на максимально большом количестве систем.
Загружаемый объект ядра называется модулем.
Динамическая загрузка и выгрузка модулей по мере необходимости появилась благодаря Питеру Мак-Дональду и впервые была представлена в версии ядра 0.99.
По своей структуре, модуль похож на обычную прогамму (так же имеется точка входа, и необходима компиляция в бинарный вид) но имеет прямой доступ к структурам и функциям ядра, в то время как обычные программы такой доступ могут получить только через обёртки.
Сборка модуля как отдельного объекта (Kernel object)
Код модуля
#include <linux/module.h> // Этот файл подключается в любом модуле по соглашению
#include <linux/kernel.h> // Содержит макросы для функции printk()
#include <linux/init.h> // Содержит определения макросов __init и __exit
void printHW(void) // Функция для вывода приветствия
{
printk("Hello, world\n"); // выводит сообщение на экран и в лог messages
}
EXPORT_SYMBOL(printHW); // Экспорт функций ядра - предоставляет доступ к функции другим модулям ядра
static int __init start(void) // Точка входа в модуль
{
printHW(); // Вызов функции
return 0; // в случае успешной загрузки возвращать нулевое значение
}
static void __exit stop(void) // Точка выхода
{
//printk("Module unloaded\n");
}
module_init(start);
module_exit(stop);
MODULE_LICENSE("GPL"); // Указывает на лицензию, под которой распространяется данный модуль
Сборка модуля (make)
Файл с кодом модуля (myModule.c) должен находиться в одной папке с make-фалом, в котом должно быть написано
obj-m += myModule.o
Тогда сборку модуля можно запустить командой
make -C ./linux-3.3-rc2 SUBDIRS=$PWD modules
Внимание, замените путь к исходным кодам ядра на тот, куда вы извлекли содержимое архива linux-3.3-rc2.tar.bz2 В итоге должен получиться файл модуля myModule.ko
Загрузка модуля
Теперь полученный модуль можно загрузить (эта команда требует прав суперпользователя). Для этого используется команда
insmod <имя модуля>
Список загруженных модулей хранится в /proc/modules (так что можно просмотреть этот файл cat /proc/modules) либо воспользоваться командой
lsmod
Выгружать модуль можно командой (также требует прав суперпользователя)
rmmod <имя модуля>
Примечания
Результат работы модуля выводится в /var/log/syslog, для его просмотра рекомендуется на отдельной консоли использовать
tail -f /var/log/syslog
Сборка модуля вместе с ядром (Kbuild)
Модули для ядра можно собирать при помщи системы Kbuild. инструкции для сборки должны находиться в файле Kconfig.
Что бы подключить наш Kconfig, нужно в файл linux-3.3-rc2/arch/x86/Kconfig.debug добавить строчку (рекомендуется сделать это где-нибудь в начле файла, например 6-й строкой)
source "SPbAU/Kconfig"
Это позволит включать и отключать сборку наших модулей в меню Kernel hacking, что в общем-то логично.
Важно заметить, что если в makefile-файлах относительный путь задавался от места размещения самого файла, то в Kconfig - относительные пути строятся от корневого каталога дерева исходных кодов (в данном случае, от linux-3.3-rc2).
Теперь, в дереве исходных кодов создаём каталог SPbAU, переносим туда (из предыдущего раздела) myModule.c и Makefile, а так же создаём файл Kconfig.
Файл Kconfig
Файл Kconfig должен содержать следующий код
config SPbAU_KERNEL
bool "Modules of students of the St. Petersburg Academic University of the Russian Academy of Sciences"
default y
---help---
SPbAU module list
config SPbAU_KERNEL_PRINTHW
tristate "The first module =)"
depends on SPbAU_KERNEL
default y
---help---
Function prints the text "Hello, world" to the syslog file.
В первой строке мы объявляем о том, что хотим сделать раздел SPbAU_KERNEL (очень важно следить, что бы имена не перекрывались, по этому рационально использовать свой префикс, типа SPbAU). Потом мы указываем что пункт является bool, т.е. способен принимать значения Y или N (подробнее о значениях будет сказано чуть ниже), и определено имя этого раздела в меню. По умолчанию, раздел отмечен как ИСТИНА. Далее идёт справачная информация, которая может занимать несколько строк (необходимо соблюдать отступ в 1 пробел от основной линии).
Потом мы описываем свой модуль. Ключевое слово tristate говорит о том, что этот пункт меню будет принимать одно из трёх возможных значения Y/M/N. Строчка depends on SPbAU_KERNEL показывает, что этот модуль не может быть установлен (и даже пункт не будет отображаться в меню), если в прерыщем пункте (SPbAU_KERNEL) стоит значение, отличное от истины. Это позволяет группировать различные элементы меню, уменьшая общую длинну списка.
Возможные значения изначального состояния пунктов меню:
- Y - модуль вкомпилируется в ядро (это произайдёт успешно, если не допускать перекрытия имён точек входа)
- M - модуль компилируется отдельным файлом (kernel object)
- N - модуль не вкомпилируется
Более подробно о языке формирования Kconfig файлов можно прочитать здесь.
Файл Makefile
В Makefile необходимо добавить строчку
obj-$(SPbAU_KERNEL_PRINTHW) += SPbAU/
В файле Kconfig для мы указали tristate, т.е. пользователь может выбрать M и собрать отдельно модуль. Тогда команда make modules_install разместит .ko-файл в указанной директории (SPbAU), которая будет размещена по адресу /lib/modules/3.3.0-rc2/kernel/, т.е. общий путь к модулю будет /lib/modules/3.3.0-rc2/kernel/SPbAU/myModule.ko
Сборка ядра с модулем
Вернувшись в корень дерева исходных кодов, вызываем меню
make menuconfig
Это приведёт к выводу на экран графического меню
Нас интересует раздел Kernel hacking, куда мы положили свои команды сборки модуля
Отметка на пункте "Modules of students of the St. Petersburg Academic University of the Russian Academy of Sciences" позволяет скрывать все наши модули (в данном случае модуль всего 1), а отметка на пункте "The first module =)" может принимать как значение, соответствующее сборке отдального модуля, так и сборки внутри ядра.
Список литературы
- Разработка ядра Linux. Роберт Лав (http://www.ozon.ru/context/detail/id/2918313/)
- Ядро Linux. Д. Бовет, М. Чезати (http://www.ozon.ru/context/detail/id/3589107/)
- Linux Device Drivers, Джонатан Корбет, Алесандро Рубини, Грег Кроа-Хартман (http://lwn.net/Kernel/LDD3/) официаль