Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 25: Строка 25:
 
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
 
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
<li>Топологическая невырожденность: <math>\biggl(\!\begin{align}V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math> — биекция. Пример: <math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math> и <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!fg</math>; тогда <math>\sigma</math> топол. вырождена.
+
<li>Топологич. невырожденность (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — нормир. вект. пр.-во, <math>\sigma\in\overline{\mathrm{Bi}}(V)\cap\mathrm C^0\!(V\times V,K)</math>): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math> — биекция.
<li>Пример (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топол. невырождена (без доказат.-ва).
+
<li>Пример: <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топологич. невырождена (без док.-ва).
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
 
<li><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}\bigl(\flat_{\sigma|_{U\times U}}\!\bigr)\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
+
<li>Утверждение: <i>пусть <math>\dim V<\infty</math>, <math>\sigma</math> невырожд. и <math>U\le V</math>; тогда <math>V/U^\perp\!\cong\overline U^*\!</math> и <math>\,\dim U+\dim U^\perp\!=\dim V</math></i>. Теорема об ортогональном дополнении.
 +
<p><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) если <math>\dim V<\infty</math> и форма <math>\sigma</math> невырождена, то <math>U=U^{\perp\perp}</math> и <math>\,U^\perp\!+W^\perp\!=(U\cap W)^\perp</math>;<br>(3) <math>\mathrm{Ker}\bigl(\flat_{\sigma|_{U\times U}}\!\bigr)\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math>форма <math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>).</i></p></ul>
  
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
Строка 39: Строка 40:
 
<p><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i></p>
 
<p><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i></p>
 
<p><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то сущ. такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диаг. матрица с <math>1,\ldots,1,-1,\ldots,-1,0,\ldots,0</math> на диагонали.</i></p>
 
<p><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то сущ. такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диаг. матрица с <math>1,\ldots,1,-1,\ldots,-1,0,\ldots,0</math> на диагонали.</i></p>
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math> и форма <math>\sigma|_{U\times U}</math> невырождена; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>.
+
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}\,e_j\Bigr)</math></i>.
 
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>m_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i>
 
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>m_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\,\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i>
 
<li>Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul>
 
<li>Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).</ul>
Строка 47: Строка 48:
 
<ul><li>Мн.-ва положительно и отрицательно определенных форм: <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math> и <math>\overline\mathrm{SBi}_{<0}(V)=-\overline\mathrm{SBi}_{>0}(V)</math>.
 
<ul><li>Мн.-ва положительно и отрицательно определенных форм: <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math> и <math>\overline\mathrm{SBi}_{<0}(V)=-\overline\mathrm{SBi}_{>0}(V)</math>.
 
<li>Мн.-ва полож. и отриц. опред. матриц: <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{<0}(n,K)=-\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>.
 
<li>Мн.-ва полож. и отриц. опред. матриц: <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{<0}(n,K)=-\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>.
<li>Утверждение: <i>пусть <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math> и <math>U\le V</math>; тогда <math>U\cap U^\perp\!=\{0\}</math> и, если <math>\dim U<\infty</math>, то форма <math>\sigma|_{U\times U}</math> невырождена, <math>V=U\oplus U^\perp\!</math> и <math>\,U=U^{\perp\perp}</math></i>.
+
<li>Утверждение: <i>пусть <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math> и <math>U\le V</math>; тогда <math>U\cap U^\perp\!=\{0\}</math> и, если <math>\dim U<\infty</math>, то форма <math>\sigma|_{U\times U}</math> невырождена (и, значит, <math>V=U\oplus U^\perp</math>)</i>.
 
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>;<br>для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>; тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i>
 
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>;<br>для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>; тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i>
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
Строка 93: Строка 94:
 
<li>Пример: <math>V=\{f\in\mathrm C^\infty\!([\alpha;\beta],\mathbb C)\mid\forall\,k\in\mathbb N_0\,\bigl(f^{(2k)}\!(\alpha)=f^{(2k)}\!(\beta)=0\bigr)\}</math>, <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!f\,\overline g\,</math> и <math>a\,\colon f\mapsto-f''</math>; тогда <math>a</math> — положит. определ. оператор.
 
<li>Пример: <math>V=\{f\in\mathrm C^\infty\!([\alpha;\beta],\mathbb C)\mid\forall\,k\in\mathbb N_0\,\bigl(f^{(2k)}\!(\alpha)=f^{(2k)}\!(\beta)=0\bigr)\}</math>, <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!f\,\overline g\,</math> и <math>a\,\colon f\mapsto-f''</math>; тогда <math>a</math> — положит. определ. оператор.
 
<li>Линейный оператор, сопряженный к линейн. оператору <math>a</math> (<math>\sigma</math> невырождена): <math>a^*(v)=\sharp^\sigma\bigl(w\mapsto\sigma(v,a(w))\bigr)</math> (<math>\Leftrightarrow\,\forall\,w\in V\;\bigl(\sigma(a^*(v),w)=\sigma(v,a(w))\bigr)</math>).
 
<li>Линейный оператор, сопряженный к линейн. оператору <math>a</math> (<math>\sigma</math> невырождена): <math>a^*(v)=\sharp^\sigma\bigl(w\mapsto\sigma(v,a(w))\bigr)</math> (<math>\Leftrightarrow\,\forall\,w\in V\;\bigl(\sigma(a^*(v),w)=\sigma(v,a(w))\bigr)</math>).
<!--<li>Сопряжение в координатах: <math>(a^*)_e^e=\sigma^{e,e}\!\cdot\overline{a_e^e}^\mathtt T\!\!\cdot(\sigma_{e,e})^\mathtt T</math>. Лемма о сопряжении операторов.
+
<li>Сопряженный оператор в координатах: <math>(a^*)_e^e=\sigma^{e,e}\!\cdot\overline{a_e^e}^\mathtt T\!\!\cdot(\sigma_{e,e})^\mathtt T</math>. Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.
<p><u>Лемма о сопряжении операторов.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>a,b\in\mathrm{End}(V)</math> и <math>c\in K</math> выполнено <math>(a+b)^*\!=a^*\!+b^*</math>, <math>(c\,a)^*\!=\overline c\,a^*</math> и <math>(a\circ b)^*\!=b^*\!\circ a^*</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{End}(V)\\a&\mapsto a^*\end{align}\!\biggr)</math> — ¯-антиэндоморфизм <math>K</math>-алгебры <math>\,\mathrm{End}(V)</math>);<br>(2) для любых <math>a\in\mathrm{End}(V)</math> выполнено <math>\,\mathrm{Spec}(a^*)=\overline{\mathrm{Spec}(a)}</math>;<br>(3) <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid a^*\!=a^{-1}\}=\{a\in\mathrm{End}(V)\mid a\circ a^*\!=a^*\!\circ a=\mathrm{id}_V\}</math>;<br>(4) <math>\mathrm{SEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a=a^*\}</math> и <math>\mathrm{AEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a=-a^*\}</math>.</i></p>
+
<p><u>Теорема о свойствах сопряжения.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>a,b\in\mathrm{End}(V)</math> и <math>c\in K</math> выполнено <math>(a+b)^*\!=a^*\!+b^*</math>, <math>(c\,a)^*\!=\overline c\,a^*</math> и <math>(a\circ b)^*\!=b^*\!\circ a^*</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{End}(V)\\a&\mapsto a^*\end{align}\!\biggr)</math> — ¯-антиэндоморфизм <math>K</math>-алгебры <math>\,\mathrm{End}(V)</math>);<br>(2) <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid a^*\!=a^{-1}\}</math>, а также <math>\,\mathrm{SEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a^*\!=a\}</math> и <math>\,\mathrm{AEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a^*\!=-a\}</math>;<br>(3) если <math>\sigma\in\overline\mathrm{SBi}(V)</math>, то для любых <math>a\in\mathrm{End}(V)</math> выполнено <math>a^{**}\!=a</math> и <math>\,\mathrm{Spec}(a^*)=\overline{\mathrm{Spec}(a)}</math>.</i></p>
<li>Форма, связанная с оператором: <math>\sigma_a(v,w)=\sigma(a(v),w)</math>. Форма, связанная с оператором, в координатах: <math>(\sigma_a)_{e,e}=(a_e^e)^\mathtt T\!\cdot\sigma_{e,e}</math>.
+
<p><u>Лемма о сопряжении и ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инв., <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, <math>\sigma</math> невырожд. и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) <math>\mathrm{Ker}\,a^*\!=(\mathrm{Im}\,a)^\perp</math> и <math>\,\mathrm{Im}\,a^*\!\subseteq(\mathrm{Ker}\,a)^\perp\!=(\mathrm{Im}\,a^*)^{\perp\perp}</math>;<br>(2) для любых <math>U\le V</math> выполнено <math>a(U)\subseteq U\,\Rightarrow\,a^*(U^\perp)\subseteq U^\perp</math> и <math>\,a^*(U)\subseteq U\,\Rightarrow\,a(U^\perp)\subseteq U^\perp</math>.</i></p>
<li><u>Лемма об операторах и формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, форма <math>\sigma</math> невырождена; тогда<br>отображения <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\overline\mathrm{Bi}(V)\\a&\mapsto\sigma_a\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{End}(V)\\\tau&\mapsto{\uparrow}^\sigma\!\circ{\downarrow}_\tau\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li>Форма, связанная с линейн. оператором <math>a</math>: <math>\sigma_a(v,w)=\sigma(a(v),w)</math>. Форма <math>\sigma_a</math> в коорд.: <math>(\sigma_a)_{e,e}=(a_e^e)^\mathtt T\!\cdot\sigma_{e,e}</math>. Лемма о форме, связанной с оператором.
<li><u>Теорема о форме, связанной с оператором, и сопряжении операторов.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство<br>над полем <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>, форма <math>\sigma</math> невырождена и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>\sigma_a(w,v)=\overline{\sigma_{a^*}(v,w)}</math>;<br>(2) <math>\sigma_a\!\in\overline\mathrm{SBi}(V)\,\Leftrightarrow\,a=a^*</math> и <math>\sigma_a\!\in\overline\mathrm{ABi}(V)\,\Leftrightarrow\,a=-a^*</math>, а также <math>a^{**}\!=a</math>;<br>(3) <math>\mathrm{Ker}\,a^*\!=(\mathrm{Im}\,a)^\perp</math> и <math>\,\mathrm{Im}\,a^*\!\le(\mathrm{Ker}\,a)^\perp</math>;<br>(4) для любых <math>U\le V</math> выполнено <math>a(U)\le U\,\Rightarrow\,a^*(U^\perp)\le U^\perp</math> и <math>\,a^*(U)\le U\,\Rightarrow\,a(U^\perp)\le U^\perp</math>.</i>-->
+
<p><u>Лемма о форме, связанной с оператором.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда<br>(1) если форма <math>\sigma</math> невырождена, то отображение <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\overline\mathrm{Bi}(V)\\a&\mapsto\sigma_a\end{align}\!\biggr)</math> — изоморфизм векторных пространств;<br>(2) если <math>\sigma\in\overline\mathrm{SBi}(V)</math>, то <math>\,\mathrm{SEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid\sigma_a\!\in\overline{\mathrm{SBi}}(V)\}</math> и <math>\,\mathrm{AEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid\sigma_a\!\in\overline{\mathrm{ABi}}(V)\}</math>.</i></p>
 
<li>Мн.-во нормальных операторов (<math>\sigma</math> невырождена): <math>\mathrm{NEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a\circ a^*\!=a^*\!\circ a\}</math>; условие в коорд. (<math>\sigma_{e,e}=\mathrm{id}_n</math>): <math>a_e^e\cdot\overline{a_e^e}^\mathtt T\!\!=\overline{a_e^e}^\mathtt T\!\!\cdot a_e^e</math>.</ul>
 
<li>Мн.-во нормальных операторов (<math>\sigma</math> невырождена): <math>\mathrm{NEnd}(V,\sigma)=\{a\in\mathrm{End}(V)\mid a\circ a^*\!=a^*\!\circ a\}</math>; условие в коорд. (<math>\sigma_{e,e}=\mathrm{id}_n</math>): <math>a_e^e\cdot\overline{a_e^e}^\mathtt T\!\!=\overline{a_e^e}^\mathtt T\!\!\cdot a_e^e</math>.</ul>
  

Версия 21:30, 3 июля 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пр.-ва ¯-симметричных форм и матриц: и .
  • Пр.-ва ¯-антисимм. форм и матриц: и .
  • Гомоморфизмы между простр.-вами с ¯-билинейной формой: .
  • Изоморфизмы между пр.-вами с формой: и .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Поляризация квадратичн. формы (): . Утверждение: .
  • Поляризация ¯-квадратичной формы (): . Утверждение: .
  • Теорема о биекции между билинейными формами и квадратичными формами.
    (1) Пусть — поле, и — вект. пр.-во над ; тогда отобр.-е — изоморфизм векторных пространств.
    (2) Пусть — векторное пространство над полем ; тогда отображение — изоморфизм векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологич. невырожденность ( или , — нормир. вект. пр.-во, ): — биекция.
  • Пример: или , и ; тогда топологич. невырождена (без док.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.
  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Утверждение: пусть , невырожд. и ; тогда и . Теорема об ортогональном дополнении.

    Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) если и форма невырождена, то и ;
    (3) и, если , то форма невырождена;
    (4) если форма невырождена, то (и, значит, определен ортогональный проектор на : ).

3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис: — диагональная матрица. Форма в ортогонал. коорд. (): .
  • Ортонормированный базис ( или ): — диагональн. матрица с на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис (то есть );
    (2) если или , то в пространстве существует ортонормированный базис (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то сущ. такая матрица , что — диаг. матрица с на диагонали.

  • Утверждение: пусть , , форма невырождена и ; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено
    (1) и ;
    (2) (это индуктивная формула для нахождения векторов ).
  • Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Векторные пространства с ¯-симметричной ¯-билинейной формой над или

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Мн.-ва положительно и отрицательно определенных форм: и .
  • Мн.-ва полож. и отриц. опред. матриц: и .
  • Утверждение: пусть и ; тогда и, если , то форма невырождена (и, значит, ).
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Теорема об ортогональном проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых и выполнено и (это неравенство Бесселя);
    (2) для любых и выполнено (и, значит, ).
  • Метрика: . Расстояние между вектором и подпространством: . Метод наименьших квадратов.
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
3.2.3  Объем и векторное произведение
  • Псевдоевклидово пространство сигнатуры — конечномерное вект. пр.-во над с невырожд. симметричной билинейной формой сигнатуры .
  • Псевдоунитарное пр.-во сигнатуры — конечномерное вект. пр.-во над с невырожд. ¯-симметричной полуторалинейной формой сигнатуры .
  • Форма объема в ориентированном псевдоевклидовом простр.-ве (): . Корректность определения формы .
  • Объем в коорд. (): (). Теорема об объеме и матрицах Грама.

    Теорема об объеме и матрицах Грама. Пусть — ориентированное псевдоевклидово пространство (относительно билинейной формы ),
    , и ; тогда (в частности, если векторы попарно
    ортогональны, то ).

  • Неотриц. объем в евкл. пр.-ве: в , если независимы; иначе .
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, и ; тогда
    (1) , где и ;
    (2) если , то .
  • Вект. пр.-е в ориентир. псевдоевкл. пр.-ве: ().
  • Вект. произведение в коорд.: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — ориентированное евклидово пространство, и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и ;
    (3) если , то для любых выполнено и .

3.3  Линейные операторы и ¯-билинейные формы

3.3.1  Автоморфизмы пространств с формой, ортогональные и унитарные операторы и матрицы
  • Группа автоморфизмов пр.-ва с ¯-билинейной формой: .
  • Утверждение: пусть и , или и ; тогда .
  • Ортогональная группа ( — в. пр. над , ): . Унитарная группа ( — в. пр. над , ): .
  • Лемма об автоморфизмах пространств с формой и матрицах.
    (1) Пусть — поле с инволюцией, — векторное пространство над полем , , , и ; тогда
    и, если форма невырождена, то условие "" можно убрать.
    (2) Пусть — псевдоевклидово пространство сигнатуры и ; тогда .
    (2) Пусть — псевдоунитарное пространство сигнатуры и ; тогда .
  • Матричные ортогонал. группы: , , , .
  • Матричные унитарные группы: , , , .
  • Примеры: , , .
  • Группа изометрий предгильбертова пр.-ва: . Теорема об описании изометрий.

    Теорема об описании изометрий. Пусть — предгильбертово пространство над полем ; тогда
    (1) ;
    (2) обозначая через , и группу и ее подгруппы и соответственно, имеем
    следующие факты: , и , а также (и, значит, ).

3.3.2  Симметричные, антисимметричные, положительно определенные и нормальные операторы
  • Пр.-во симметричных операторов: ; условие в коорд.: .
  • Пр.-во антисимм. операторов: ; условие в коорд.: .
  • Мн.-во положительно опред. операторов ( или , ): .
  • Пример: , и ; тогда — положит. определ. оператор.
  • Линейный оператор, сопряженный к линейн. оператору ( невырождена): ().
  • Сопряженный оператор в координатах: . Теорема о свойствах сопряжения. Лемма о сопряжении и ортогональном дополнении.

    Теорема о свойствах сопряжения. Пусть — поле с инволюцией, — вект. простр.-во над полем , и форма невырождена; тогда
    (1) для любых и выполнено , и
    (и, значит, отображение — ¯-антиэндоморфизм -алгебры );
    (2) , а также и ;
    (3) если , то для любых выполнено и .

    Лемма о сопряжении и ортогональном дополнении. Пусть — поле с инв., — вект. пр.-во над , , невырожд. и ; тогда
    (1) и ;
    (2) для любых выполнено и .

  • Форма, связанная с линейн. оператором : . Форма в коорд.: . Лемма о форме, связанной с оператором.

    Лемма о форме, связанной с оператором. Пусть — поле с инволюцией, — векторное пространство над полем и ; тогда
    (1) если форма невырождена, то отображение — изоморфизм векторных пространств;
    (2) если , то и .

  • Мн.-во нормальных операторов ( невырождена): ; условие в коорд. (): .