Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 8: Строка 8:
 
<li>Матрица Грама (<math>d=(v_1,\ldots,v_m)</math>): <math>(\sigma_{d,d})_{j_1,j_2}\!=\sigma(v_{j_1}\!,v_{j_2})</math>. Форма <math>\sigma</math> в координ.-х (<math>e\in\mathrm{OB}(V)</math>): <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
 
<li>Матрица Грама (<math>d=(v_1,\ldots,v_m)</math>): <math>(\sigma_{d,d})_{j_1,j_2}\!=\sigma(v_{j_1}\!,v_{j_2})</math>. Форма <math>\sigma</math> в координ.-х (<math>e\in\mathrm{OB}(V)</math>): <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
 
<li>Изоморфизм вект. пр.-в <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Изоморфизм вект. пр.-в <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
+
<li>Пространство (над полем <math>\{c\in K\mid c=\overline c\}</math>) ¯-симметричных ¯-билинейных форм: <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math>.
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
+
<li>Простр.-во (над полем <math>\{c\in K\mid c=\overline c\}</math>) ¯-антисимметричных ¯-билинейных форм: <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math>.
 +
<li>Пр.-ва ¯-симметричных и ¯-антисимметричных матриц: <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
 
<li><math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>, <math>\mathrm{Iso}((V,\sigma),(Y,\varphi))=\mathrm{Hom}((V,\sigma),(Y,\varphi))\cap\mathrm{Bij}(V,Y)</math>.</ul>
 
<li><math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>, <math>\mathrm{Iso}((V,\sigma),(Y,\varphi))=\mathrm{Hom}((V,\sigma),(Y,\varphi))\cap\mathrm{Bij}(V,Y)</math>.</ul>
  
Строка 15: Строка 16:
 
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\,\overline c\,\kappa(v)</math>.
 
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\,\overline c\,\kappa(v)</math>.
 
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 +
<li>Поляризация квадратичн. формы <math>\kappa</math> (<math>\mathrm{char}\,K\ne2</math>): <math>\mathrm{pol}_\kappa(v,w)=\frac{\kappa(v+w)-\kappa(v)-\kappa(w)}2=\frac{\kappa(v+w)-\kappa(v-w)}4</math>. Утверждение: <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>.
 +
<li>Поляризация ¯-квадратичной формы <math>\kappa</math> (<math>K=\mathbb C</math>): <math>\mathrm{pol}_\kappa(v,w)=\frac{\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)}4</math>. Утверждение: <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>.
 +
<li><u>Теорема о биекции между билинейными формами и квадратичными формами.</u><br><i>(1) Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — вект. пр.-во над <math>K</math>; тогда отобр.-е <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств.<br>(2) Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда отображение <math>\biggl(\!\begin{align}\overline{\mathrm{Bi}}(V)&\to\overline{\mathrm{Quad}}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств.</i>
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
<li>Примеры гиперповерхностей. Утверждение: <i>пусть <math>s\in\mathrm{Mat}(n,K)</math>, <math>\lambda\in K_n</math>, <math>c\in K</math> и <math>v\in K^n</math>; тогда <math>v^\mathtt T\!\cdot s\cdot v+2\,\lambda\cdot v+c=\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)^{\!\mathtt T}\!\!\cdot\!\Bigl(\begin{smallmatrix}c&\lambda\\\lambda^\mathtt T&s\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)</math></i>.
+
<li>Примеры гиперповерхностей. Утверждение: <i>пусть <math>s\in\mathrm{Mat}(n,K)</math>, <math>\lambda\in K_n</math>, <math>c\in K</math> и <math>v\in K^n</math>; тогда <math>v^\mathtt T\!\cdot s\cdot v+2\,\lambda\cdot v+c=\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)^{\!\mathtt T}\!\!\cdot\!\Bigl(\begin{smallmatrix}c&\lambda\\\lambda^\mathtt T&s\end{smallmatrix}\Bigr)\!\cdot\!\Bigl(\begin{smallmatrix}1\\v\end{smallmatrix}\Bigr)</math></i>.</ul>
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i></ul>
+
  
 
<h5>3.1.3&nbsp; Музыкальные изоморфизмы и невырожденные ¯-билинейные формы</h5>
 
<h5>3.1.3&nbsp; Музыкальные изоморфизмы и невырожденные ¯-билинейные формы</h5>
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
+
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
 
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
<li>Топологическая невырожденность: <math>\biggl(\!\begin{align}V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math> — биекция. Пример: <math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math> и <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!fg</math>; тогда <math>\sigma</math> топол. вырождена.
+
<li>Топологическая невырожденность: <math>\biggl(\!\begin{align}V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\!\end{align}\!\biggr)</math> — биекция. Пример: <math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math> и <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!fg</math>; тогда <math>\sigma</math> топол. вырождена.
<li>Пример (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\sigma\,\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топол. невырождена (без доказат.-ва).
+
<li>Пример (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>V=\ell^2\!=\bigl\{f\in\mathrm{Func}(\mathbb N,K)\mid\sum_{n=1}^\infty|f_n|^2\!<\infty\bigr\}</math> и <math>\,\sigma\colon(f,g)\mapsto\sum_{n=1}^\infty f_n\overline g_n</math>; тогда <math>\sigma</math> топол. невырождена (без доказат.-ва).
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
 
<li><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
 
<li><u>Теорема о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>v_1,\ldots,v_m\in V</math>,<br><math>d=(v_1,\ldots,v_m)</math> и <math>U=\langle v_1,\ldots,v_m\rangle</math>; тогда <math>\sigma_{d,d}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>d\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
 
<li>Ортогональные векторы (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополн.-е: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}\,\flat_{\sigma|_{U\times U}}\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
+
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}\bigl(\flat_{\sigma|_{U\times U}}\!\bigr)\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
  
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
Строка 49: Строка 51:
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
 
<li>Индексы инерции формы <math>\sigma</math>: <math>\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{>0}(U)\}</math> и <math>\mathrm{ind}_{<0}(\sigma)=\max\{\dim U\mid U\le V\,\land\,\sigma|_{U\times U}\!\in\overline{\mathrm{SBi}}_{<0}(U)\}</math>.
 
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OOB}(V,\sigma)</math>; тогда<br>(1) <math>\mathrm{ind}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{ind}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>);<br>(3) <math>\mathrm{ind}_{>0}(\sigma)+\mathrm{ind}_{<0}(\sigma)=\mathrm{rk}(\sigma)</math>.</i>
 
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — вект. простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OOB}(V,\sigma)</math>; тогда<br>(1) <math>\mathrm{ind}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{ind}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>);<br>(3) <math>\mathrm{ind}_{>0}(\sigma)+\mathrm{ind}_{<0}(\sigma)=\mathrm{rk}(\sigma)</math>.</i>
<li><u>Классификация конечномерных пространств с ¯-симметричной ¯-билинейной формой над <b>R</b> или <b>C</b>.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V,Y</math> — векторные<br>пространства над полем <math>K</math>, <math>\dim V,\dim Y<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>\varphi\in\overline\mathrm{SBi}(Y)</math>; тогда <math>(V,\sigma)\cong(Y,\varphi)</math> (то есть <math>\,\mathrm{Iso}((V,\sigma),(Y,\varphi))\ne\varnothing</math>),<br>если и только если <math>\dim V=\dim Y</math>, <math>\mathrm{ind}_{>0}(\sigma)=\mathrm{ind}_{>0}(\varphi)</math> и <math>\mathrm{ind}_{<0}(\sigma)=\mathrm{ind}_{<0}(\varphi)</math>.</i>
+
<li><u>Теорема о классификации пространств с формой.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V,Y</math> — векторные пространства над полем <math>K</math>, <math>\dim V,\dim Y<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>\varphi\in\overline\mathrm{SBi}(Y)</math>; тогда <math>(V,\sigma)\cong(Y,\varphi)</math>, если и только если <math>\dim V=\dim Y</math>, <math>\mathrm{ind}_{>0}(\sigma)=\mathrm{ind}_{>0}(\varphi)</math> и <math>\mathrm{ind}_{<0}(\sigma)=\mathrm{ind}_{<0}(\varphi)</math>.</i>
 
<li>Сигнатура формы <math>\sigma</math>: <math>(\mathrm{ind}_{>0}(\sigma),\mathrm{ind}_{<0}(\sigma))</math> (или <math>\mathrm{ind}_{>0}(\sigma)-\mathrm{ind}_{<0}(\sigma)</math>). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).</ul>
 
<li>Сигнатура формы <math>\sigma</math>: <math>(\mathrm{ind}_{>0}(\sigma),\mathrm{ind}_{<0}(\sigma))</math> (или <math>\mathrm{ind}_{>0}(\sigma)-\mathrm{ind}_{<0}(\sigma)</math>). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).</ul>
  

Версия 18:00, 1 июля 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Пространство (над полем ) ¯-симметричных ¯-билинейных форм: .
  • Простр.-во (над полем ) ¯-антисимметричных ¯-билинейных форм: .
  • Пр.-ва ¯-симметричных и ¯-антисимметричных матриц: и .
  • , .
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Поляризация квадратичн. формы (): . Утверждение: .
  • Поляризация ¯-квадратичной формы (): . Утверждение: .
  • Теорема о биекции между билинейными формами и квадратичными формами.
    (1) Пусть — поле, и — вект. пр.-во над ; тогда отобр.-е — изоморфизм векторных пространств.
    (2) Пусть — векторное пространство над полем ; тогда отображение — изоморфизм векторных пространств.
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологическая невырожденность: — биекция. Пример: и ; тогда топол. вырождена.
  • Пример ( или ): и ; тогда топол. невырождена (без доказат.-ва).
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Теорема о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.
  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) и, если , то невырождена;
    (3) если форма невырождена, то (и, значит, определен ортогональный проектор на : );
    (4) если форма невырождена и , то .
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис относит. : — диагональная матрица.
  • Ортонормированный базис относительно ( или ): — диагональная матрица с , , на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис относительно (то есть );
    (2) если или , то в пространстве существует ортонормированный базис относительно (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то существует такая матрица , что — диагональная матрица с , , на диагонали.

  • Утверждение: пусть , , и форма невырождена; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено
    (1) и ;
    (2) (это индуктивная формула для нахождения векторов ).
  • Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Векторные пространства с ¯-симметричной ¯-билинейной формой над или

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Положительно опред. формы: . Отрицательно опред. формы: .
  • Положит. и отрицат. опред. матрицы: и .
  • Утверждение: пусть и ; тогда и, если , то форма невырождена, и .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. простр.-во над полем , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Теорема о классификации пространств с формой. Пусть или , — векторные пространства над полем , ,
    и ; тогда , если и только если , и .
  • Сигнатура формы : (или ). Классифик.-я кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Теорема об ортогональном проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых и выполнено и (это неравенство Бесселя);
    (2) для любых и выполнено (и, значит, ).
  • Метрика: . Расстояние между вектором и подпространством: . Метод наименьших квадратов.
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
3.2.3  Объем и векторное произведение
  • Псевдоевклидово пространство — конечномерное вект. пр.-во над с невырожденной симметричной билинейной формой. Пример: пр.-во Минковского.
  • Форма объема в ориентированном псевдоевклидовом простр.-ве (): . Корректность определения формы .
  • Объем в коорд. (): (). Теорема об объеме и матрицах Грама.

    Теорема об объеме и матрицах Грама. Пусть — ориентированное псевдоевклидово пространство (относительно билинейной формы ),
    , и ; тогда (в частности, если векторы попарно
    ортогональны, то ).

  • Неотрицат. объем в евкл. пр.-ве: в , если независ. (иначе ).
  • Теорема о неотрицательном объеме в евклидовом пространстве. Пусть — евклидово пространство, и ; тогда
    (1) , где и ;
    (2) если , то .
  • Вект. пр.-е в ориентир. псевдоевкл. пр.-ве: ().
  • Вект. произведение в коорд.: . Теорема о векторном произведении.

    Теорема о векторном произведении. Пусть — ориентированное евклидово пространство, и ; тогда
    (1) след. утв.-я эквивалентны: (у1) векторы независимы, (у2) и (у3) ;
    (2) и ;
    (3) если , то для любых выполнено и .