Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<h3>3.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
 
<h3>3.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
 
<h5>3.1.1&nbsp; ¯-Билинейные формы</h5>
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>V=K^n</math>, <math>s\in\mathrm{Mat}(n,K)</math>), <math>(f,g)\mapsto\!\int_\alpha^\beta\!\!sfg</math> (<math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math>, <math>s\in V</math>).
+
<ul><li>Пространство билинейных форм: <math>\mathrm{Bi}(V)</math>. Примеры: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>V=K^n</math>, <math>s\in\mathrm{Mat}(n,K)</math>), <math>(f,g)\mapsto\!\int_\alpha^\beta\!\!sfg</math> (<math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math>, <math>s\in V</math>).
<li>Поля с инволюцией. Пространство <math>\overline V</math>: <math>c\overline\cdot v=\overline c\,v</math>. Пространство ¯-билинейных (полуторалинейных, если <math>\overline{\phantom c}\ne\mathrm{id}_K</math>) форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
+
<li>Поля с инволюцией. Пространство <math>\overline V</math>: <math>c\overline\cdot v=\overline c\,v</math>. Простр.-во ¯-билинейных форм (полуторалинейных форм, если <math>\overline{\phantom c}\ne\mathrm{id}_K</math>): <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
<li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math> (<math>e\in V^n</math>). ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
+
<li>Матрица Грама (<math>d=(v_1,\ldots,v_m)</math>): <math>(\sigma_{d,d})_{j_1,j_2}\!=\sigma(v_{j_1}\!,v_{j_2})</math>. Форма <math>\sigma</math> в координ.-х (<math>e\in\mathrm{OB}(V)</math>): <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math> (<math>e\in\mathrm{OB}(V)</math>). Преобразов.-я при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
+
<li>Изоморфизм вект. пр.-в <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
 
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
 
<li>Простр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
 
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
 
<li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.
Строка 55: Строка 55:
 
<h5>3.2.2&nbsp; Предгильбертовы пространства</h5>
 
<h5>3.2.2&nbsp; Предгильбертовы пространства</h5>
 
<ul><li>Предгильбертово пространство — вект. пр.-во над <math>\mathbb R</math> или <math>\mathbb C</math> с полож. опред. формой. Обозн.-е формы: <math>(\,\mid\,)</math>. Примеры: <math>(v\!\mid\!w)=v^\mathtt T\!\cdot\overline w</math>, <math>(f\!\mid\!g)=\!\int_\alpha^\beta\!\!f\,\overline g</math>.
 
<ul><li>Предгильбертово пространство — вект. пр.-во над <math>\mathbb R</math> или <math>\mathbb C</math> с полож. опред. формой. Обозн.-е формы: <math>(\,\mid\,)</math>. Примеры: <math>(v\!\mid\!w)=v^\mathtt T\!\cdot\overline w</math>, <math>(f\!\mid\!g)=\!\int_\alpha^\beta\!\!f\,\overline g</math>.
<li>Норма: <math>\|v\|=\!\sqrt{(v\!\mid\!v)}</math>. Утверждение: <i><math>v\ne0\,\Rightarrow\,\|v\|>0</math> и <math>\|c\,v\|=|c|\,\|v\|</math></i>. Гильбертово пространство — полное предгильбертово пр.-во. Пример: <math>\ell^2</math>.
 
 
<li>Евклидово пространство — конечномерное предгильбертово пр.-во над <math>\mathbb R</math>. Унитарное пространство — конечномерное предгильбертово пр.-во над <math>\mathbb C</math>.
 
<li>Евклидово пространство — конечномерное предгильбертово пр.-во над <math>\mathbb R</math>. Унитарное пространство — конечномерное предгильбертово пр.-во над <math>\mathbb C</math>.
 +
<li>Норма: <math>\|v\|=\!\sqrt{(v\!\mid\!v)}</math>. Утверждение: <i><math>v\ne0\,\Rightarrow\,\|v\|>0</math> и <math>\|c\,v\|=|c|\,\|v\|</math></i>. Гильбертово пространство — полное предгильбертово пр.-во. Пример: <math>\ell^2</math>.
 
<li><u>Теорема о свойствах нормы.</u> <i>Пусть <math>V</math> — предгильбертово пространство; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>|(v\!\mid\!w)|\le\|v\|\,\|w\|</math> (это неравенство Коши–Буняковского–Шварца);<br>(2) для любых <math>v,w\in V</math> выполнено <math>\|v+w\|\le\|v\|+\|w\|</math> (это неравенство треугольника);<br>(3) если <math>\dim V<\infty</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> и <math>v\in V</math> выполнено <math>v=\!\sum_{i=1}^{\dim V}\!(v\!\mid\!e_i)\,e_i</math> и <math>\|v\|^2=\!\sum_{i=1}^{\dim V}\!|(v\!\mid\!e_i)|^2</math> (это равенство Парсеваля).</i>
 
<li><u>Теорема о свойствах нормы.</u> <i>Пусть <math>V</math> — предгильбертово пространство; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>|(v\!\mid\!w)|\le\|v\|\,\|w\|</math> (это неравенство Коши–Буняковского–Шварца);<br>(2) для любых <math>v,w\in V</math> выполнено <math>\|v+w\|\le\|v\|+\|w\|</math> (это неравенство треугольника);<br>(3) если <math>\dim V<\infty</math>, то для любых <math>e\in\mathrm{OnOB}(V)</math> и <math>v\in V</math> выполнено <math>v=\!\sum_{i=1}^{\dim V}\!(v\!\mid\!e_i)\,e_i</math> и <math>\|v\|^2=\!\sum_{i=1}^{\dim V}\!|(v\!\mid\!e_i)|^2</math> (это равенство Парсеваля).</i>
 
<li><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U\le V</math> и <math>\dim U<\infty</math>; тогда<br>(1) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя);<br>(2) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\|v-\mathrm{proj}_U(v)\|<\|v-u\|</math> (и, значит, <math>\|v-\mathrm{proj}_U(v)\|=\min\{\|v-u\|\mid u\in U\}</math>).</i>
 
<li><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — предгильбертово пространство, <math>U\le V</math> и <math>\dim U<\infty</math>; тогда<br>(1) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v\!\mid\!e_j)\,e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v\!\mid\!e_j)|^2</math> (это неравенство Бесселя);<br>(2) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\|v-\mathrm{proj}_U(v)\|<\|v-u\|</math> (и, значит, <math>\|v-\mathrm{proj}_U(v)\|=\min\{\|v-u\|\mid u\in U\}</math>).</i>
 
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Расстояние между вектором и подпространством: <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>. Метод наименьших квадратов.
 
<li>Метрика: <math>\mathrm{dist}(v,w)=\|v-w\|</math>. Расстояние между вектором и подпространством: <math>\mathrm{dist}(v,U)=\mathrm{dist}(v,\mathrm{proj}_U(v))</math>. Метод наименьших квадратов.
 +
<li>Объем (<math>\sigma=(\,\mid\,)</math>, <math>d=(v_1,\ldots,v_m)</math>): <math>|\mathrm{vol}|(v_1,\ldots,v_m)=\!\sqrt{\det\sigma_{d,d}}</math> (напоминание: <math>\sigma_{d,d}=\Biggl(\begin{smallmatrix}(v_1\mid\,v_1)&\ldots&(v_1\mid\,v_m)\\\vdots&\ddots&\vdots\\(v_m\mid\,v_1)&\ldots&(v_m\mid\,v_m)\end{smallmatrix}\Biggr)</math>). Теорема о свойствах объема.
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.
 
<li>Угол между векторами и между вектором и подпр.-вом (<math>K=\mathbb R</math>, <math>v\ne0</math>, <math>w\ne0</math>, <math>U\ne\{0\}</math>): <math>\angle(v,w)=\arccos\frac{(v\!\mid\!w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.
 
<li>Псевдоевклидово пр.-во сигнатуры <math>(p,q)</math> — к.-м. вект. пр.-во над <math>\mathbb R</math> с невырожденной симметр. билин. формой сигнатуры <math>(p,q)</math>. Пр.-во Минковского.</ul>
 
<li>Псевдоевклидово пр.-во сигнатуры <math>(p,q)</math> — к.-м. вект. пр.-во над <math>\mathbb R</math> с невырожденной симметр. билин. формой сигнатуры <math>(p,q)</math>. Пр.-во Минковского.</ul>

Версия 20:00, 28 июня 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм: . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Простр.-во ¯-билинейных форм (полуторалинейных форм, если ): .
  • Матрица Грама (): . Форма в координ.-х (): .
  • Изоморфизм вект. пр.-в . Преобразования при замене базиса: и .
  • Простр.-ва (над полем ) и .
  • Пр.-ва (над полем ) и .
  • , .
  • Группа автоморф.-в пр.-ва с формой: ; в коорд.: ().
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры гиперповерхностей. Утверждение: пусть , , и ; тогда .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт:
    — симметричная билинейная форма (то есть );
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение ,
    имеем следующий факт: — полуторалинейная форма (то есть );
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Утверждение: пусть и , или и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологическая невырожденность: — биекция. Пример: и ; тогда топол. вырождена.
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Лемма о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , , ,
    и ; тогда , если и только если и форма невырождена.
  • Ортогональные векторы (): . Ортогональное дополн.-е: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) и, если , то невырождена;
    (3) если форма невырождена, то (и, значит, определен ортогональный проектор на : );
    (4) если форма невырождена и , то .
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис относит. : — диагональная матрица.
  • Ортонормированный базис относительно ( или ): — диагональная матрица с , , на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис относительно (то есть );
    (2) если или , то в пространстве существует ортонормированный базис относительно (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то существует такая матрица , что — диагональная матрица с , , на диагонали.

  • Утверждение: пусть , , и форма невырождена; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено
    (1) и ;
    (2) (это индуктивная формула для нахождения векторов ).
  • Ортогональные системы функций. Тригонометрические многочлены, многочлены Лежандра, Чебышёва и Эрмита (см. пункты 5–10 в § 4 части 2 в [5]).

3.2  Векторные пространства с ¯-симметричной ¯-билинейной формой над или

3.2.1  Положительно и отрицательно определенные формы и сигнатура формы
  • Положительно опред. формы: . Отрицательно опред. формы: .
  • Положит. и отрицат. опред. матрицы: и .
  • Утверждение: пусть и ; тогда и, если , то форма невырождена, , .
  • Критерий Сильвестра. Пусть или , — векторное пространство над полем , , и ;
    для любых обозначим через -й угловой минор матрицы ; тогда
    (1) , если и только если ;
    (2) , если и только если .
  • Индексы инерции формы : и .
  • Закон инерции Сильвестра. Пусть или , — вект. пр.-во над , , и ; тогда
    (1) (и, значит, число не зависит от базиса );
    (2) (и, значит, число не зависит от базиса );
    (3) .
  • Классификация конечномерных пространств с ¯-симметричной ¯-билинейной формой над R или C. Пусть или , — векторные
    пространства над полем , , и ; тогда (то есть ),
    если и только если , и .
  • Сигнатура формы : (). Классификация кривых и поверхностей второго порядка (см. § 2 главы VIII в [1]).
3.2.2  Предгильбертовы пространства
  • Предгильбертово пространство — вект. пр.-во над или с полож. опред. формой. Обозн.-е формы: . Примеры: , .
  • Евклидово пространство — конечномерное предгильбертово пр.-во над . Унитарное пространство — конечномерное предгильбертово пр.-во над .
  • Норма: . Утверждение: и . Гильбертово пространство — полное предгильбертово пр.-во. Пример: .
  • Теорема о свойствах нормы. Пусть — предгильбертово пространство; тогда
    (1) для любых выполнено (это неравенство Коши–Буняковского–Шварца);
    (2) для любых выполнено (это неравенство треугольника);
    (3) если , то для любых и выполнено и (это равенство Парсеваля).
  • Теорема об ортогональном проектировании. Пусть — предгильбертово пространство, и ; тогда
    (1) для любых и выполнено и (это неравенство Бесселя);
    (2) для любых и выполнено (и, значит, ).
  • Метрика: . Расстояние между вектором и подпространством: . Метод наименьших квадратов.
  • Объем (, ): (напоминание: ). Теорема о свойствах объема.
  • Угол между векторами и между вектором и подпр.-вом (, , , ): и .
  • Псевдоевклидово пр.-во сигнатуры — к.-м. вект. пр.-во над с невырожденной симметр. билин. формой сигнатуры . Пр.-во Минковского.