Алгебра phys 2 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 17: Строка 17:
 
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 
<li>¯-Квадратичная форма в коорд.: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math>; если <math>\overline{\phantom c}=\mathrm{id}_K</math>, то <math>\kappa(v)</math> — однор. многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
 
<li>Гиперповерхность второго порядка в пространстве <math>V</math>: множество вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>.
<li>Примеры кривых второго порядка (<math>\dim V=2</math>, <math>e\in\mathrm{OB}(V)</math>): <math>\{v\in V\mid(v^1)^2+(v^2)^2=1\}</math>, <math>\{v\in V\mid(v^1)^2-(v^2)^2=1\}</math>, <math>\{v\in V\mid(v^1)^2=v^2\}</math>.
+
<li>Примеры кривых второго порядка (<math>\dim V=2</math>, <math>e\in\mathrm{OB}(V)</math>): <math>\{v\in V\mid(v^1)^2+(v^2)^2=1\}</math>, <math>\{v\in V\mid(v^1)^2-(v^2)^2=1\}</math> и <math>\{v\in V\mid(v^1)^2=v^2\}</math>.
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующие факты:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>) и <math>\forall\,v\in V\;\bigl(\kappa(v)=\mathrm{pol}_\kappa(v,v)\bigr)</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — изоморфизм векторных пространств.</i>
+
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v)-\kappa(w)\bigr)/2\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующие факты: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>) и <math>\forall\,v\in V\;\bigl(\kappa(v)=\mathrm{pol}_\kappa(v,v)\bigr)</math>;<br>(2) отображение <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> — изоморфизм векторных пространств.</i>
+
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> — взаимно обратные изоморфизмы векторных пространств.</i>
 
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math> и <math>\sigma\in\mathrm{SBi}(V)</math>, или <math>K=\mathbb C</math> и <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\,\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
 
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math> и <math>\sigma\in\mathrm{SBi}(V)</math>, или <math>K=\mathbb C</math> и <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\,\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
  
<!--<h5>3.1.3&nbsp; Невырожденные ¯-билинейные формы</h5>
+
<h5>3.1.3&nbsp; Музыкальные изоморфизмы и невырожденные ¯-билинейные формы</h5>
<ul><li>Опускание индексов: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индексов в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>.
+
<ul><li>Оператор бемоль (опускание индекса): <math>\biggl(\!\begin{align}\flat_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>(\flat_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>(\flat_\sigma v)_j=\sum_{i=1}^nv^i\,\sigma_{i,j}</math>.
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\downarrow_\sigma</math> — биекция<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
+
<li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\flat_\sigma</math> — биекция<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\mathrm{Ker}\,\flat_\sigma\!=\{0\}</math>. Ранг формы <math>\sigma</math>: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,\flat_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
<li>Топологическая невырожденность (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>). Пример: <math>V=\mathrm C^0\!([-1;1],\mathbb R)</math> и <math>\sigma\colon(f,g)\mapsto\!\int_{-1}^1\!fg</math>; тогда <math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math> и <math>\mathrm{Im}\,{\downarrow}_\sigma\!<V^{\mathrm C^0*}</math>.
+
<li>Топологическая невырожденность: <math>\biggl(\!\begin{align}V&\to\overline V^*\!\!\cap\mathrm C^0\!(V,K)\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math> — биекция. Пример: <math>V=\mathrm C^0\!([\alpha;\beta],\mathbb R)</math> и <math>\sigma\,\colon(f,g)\mapsto\!\int_\alpha^\beta\!\!fg</math>; тогда <math>\sigma</math> топол. вырождена.
<li>Подъем индексов (<math>\sigma</math> невырождена): <math>\uparrow^\sigma={\downarrow}_\sigma^{-1}</math>. Подъем индексов в координатах (<math>\sigma^{e,e}=(\sigma_{e,e})^{-1}</math>): <math>({\uparrow}^\sigma\lambda)^e=(\sigma^{e,e})^\mathtt T\!\cdot(\lambda_e)^\mathtt T</math> и <math>({\uparrow}^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{j,i}\,\lambda_j</math>.
+
<li>Оператор диез (подъем индекса): <math>\sharp^\sigma\!=\flat_\sigma^{-1}</math> (<math>\sigma</math> невырождена). Подъем индекса в коорд. (<math>\sigma^{e,e}=(\sigma_{e,e}^{-1})^\mathtt T</math>): <math>(\sharp^\sigma\lambda)^e=\sigma^{e,e}\!\cdot(\lambda_e)^\mathtt T</math> и <math>(\sharp^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
<li><u>Лемма о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>e\in V^m</math>; обозначим<br>через <math>U</math> пространство <math>\langle e_1,\ldots,e_m\rangle</math>; тогда <math>\sigma_{e,e}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>e\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
+
<li><u>Лемма о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math> и <math>e\in V^m</math>; обозначим<br>через <math>U</math> пространство <math>\langle e_1,\ldots,e_m\rangle</math>; тогда <math>\sigma_{e,e}\!\in\mathrm{GL}(m,K)</math>, если и только если <math>e\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
 
<li>Ортогональность (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополнение: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
 
<li>Ортогональность (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополнение: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>.
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\le U^{\perp\perp}</math>, <math>U\le W\,\Rightarrow\,W^\perp\!\le U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\le(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}({\downarrow}_{\sigma|_{U\times U}})=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
+
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\subseteq U^{\perp\perp}</math>, <math>U\subseteq W\,\Rightarrow\,W^\perp\!\subseteq U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\subseteq(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}\,\flat_{\sigma|_{U\times U}}\!=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор на <math>U</math>: <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp\!&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul>
  
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
 
<h5>3.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1}\!,e_{j_2})=0\bigr)</math>.
+
<ul><li>Ортогональный базис относит. <math>\sigma</math>: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\;\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1}\!,e_{j_2})=0\bigr)</math>.
<li>Ортонормированный базис (если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>.
+
<li>Ортонормированный базис относительно <math>\sigma</math> (<math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\;\Leftrightarrow\;</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>.
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>; тогда<br>существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
+
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>;<br>тогда существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
 
<li>Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.
 
<li>Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.
<p><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i></p>
+
<p><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис относительно <math>\sigma</math> (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис относительно <math>\sigma</math> (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i></p>
 
<p><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i></p>
 
<p><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i></p>
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>v\in V</math>; тогда <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}e_j</math></i>.
+
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math> и форма <math>\sigma|_{U\times U}</math> невырождена; тогда <math>\forall\,v\in V\;\Bigl(\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}e_j\Bigr)</math></i>.
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и<br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно<br>тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul>
+
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>m_i</math> <math>i</math>-й угловой минор<br>матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul>
  
<h3>3.2&nbsp; Векторные пространства с ¯-симметричной ¯-билинейной формой над <math>\mathbb R</math> или <math>\mathbb C</math></h3>
+
<!--<h3>3.2&nbsp; Векторные пространства с ¯-симметричной ¯-билинейной формой над <math>\mathbb R</math> или <math>\mathbb C</math></h3>
 
<h5>3.2.1&nbsp; Положительно и отрицательно определенные формы</h5>
 
<h5>3.2.1&nbsp; Положительно и отрицательно определенные формы</h5>
 
<ul><li>Множества <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math>.
 
<ul><li>Множества <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math>.

Версия 03:30, 27 июня 2017

3  Билинейная и полилинейная алгебра

3.1  Векторные пространства с ¯-билинейной формой

3.1.1  ¯-Билинейные формы
  • Пространство билинейных форм . Примеры: (, ), (, ).
  • Поля с инволюцией. Пространство : . Пространство ¯-билинейных (полуторалинейных, если ) форм: .
  • Матрица Грама формы : (). ¯-Билинейная форма в координатах: .
  • Изоморфизм (). Преобразов.-я при замене базиса: и .
  • Простр.-ва (над полем ) и .
  • Пр.-ва (над полем ) и .
  • , .
  • Группа автоморфизмов простр.-ва с формой: и ().
3.1.2  ¯-Квадратичные формы
  • Пространство ¯-квадратичных форм: . Утверждение: .
  • ¯-Квадратичная форма в коорд.: ; если , то — однор. многочлен степени от .
  • Гиперповерхность второго порядка в пространстве : множество вида , где , , .
  • Примеры кривых второго порядка (, ): , и .
  • Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт:
    — симметричная билинейная форма (то есть );
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
    (1) для любых , обозначая через отображение ,
    имеем следующий факт: — полуторалинейная форма (то есть );
    (2) отображения и — взаимно обратные изоморфизмы векторных пространств.
  • Утверждение: пусть и , или и ; тогда .
3.1.3  Музыкальные изоморфизмы и невырожденные ¯-билинейные формы
  • Оператор бемоль (опускание индекса): . Опускание индекса в координатах: и .
  • Случай : невырождена — биекция. Ранг формы : . Утверждение: .
  • Топологическая невырожденность: — биекция. Пример: и ; тогда топол. вырождена.
  • Оператор диез (подъем индекса): ( невырождена). Подъем индекса в коорд. (): и .
  • Лемма о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр.-во над , , и ; обозначим
    через пространство ; тогда , если и только если и форма невырождена.
  • Ортогональность (): . Ортогональное дополнение: .
  • Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр.-во над , и ; тогда
    (1) , , и ;
    (2) и, если , то невырождена;
    (3) если форма невырождена, то (и, значит, определен ортогональный проектор на : );
    (4) если форма невырождена и , то .
3.1.4  Диагонализация ¯-симметричных ¯-билинейных форм
  • Ортогональный базис относит. : — диагональная матрица.
  • Ортонормированный базис относительно ( или ): — диагональная матрица с , , на диагонали.
  • Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над полем и ;
    тогда существует такой вектор , что (то есть существует неизотропный вектор).
  • Теорема Лагранжа и матричная формулировка этой теоремы. Алгоритм приведения квадратичной формы к сумме квадратов с коэффициентами.

    Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над полем , и ; тогда
    (1) в пространстве существует ортогональный базис относительно (то есть );
    (2) если или , то в пространстве существует ортонормированный базис относительно (то есть ).

    Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
    (1) существует такая матрица , что — диагональная матрица;
    (2) если или , то существует такая матрица , что — диагональная матрица с , , на диагонали.

  • Утверждение: пусть , , и форма невырождена; тогда .
  • Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
    и ; для любых обозначим через пространство и обозначим через -й угловой минор
    матрицы . Пусть для любых форма невырождена (это эквивалентно тому, что ); для любых
    обозначим через вектор . Тогда для любых выполнено
    (1) и ;
    (2) (это индуктивная формула для нахождения векторов ).