Алгебра phys 1 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 92: | Строка 92: | ||
<h5>1.3.2 Кольца многочленов</h5> | <h5>1.3.2 Кольца многочленов</h5> | ||
− | <ul><li> | + | <ul><li>Кольцо многочленов от переменной <math>x</math> над кольцом <math>R</math>: <math>R[x]=\mathrm{FinFunc}(\mathrm W(x),R)</math>; отождествл.-е <math>\delta_{x^i}</math> и <math>x^i</math>; общий вид многочлена: <math>f_nx^n+\ldots+f_0</math>. |
− | <li> | + | <li>Умножение многочленов. Степень и старший коэфф.-т многочлена. Утверждение: <math>R[x]^\times\!=R^\times</math>. Делимость в <math>R[x]</math>: <math>g\,|\,f\;\Leftrightarrow\;\exists\,h\in R[x]\;\bigl(f=g\,h\bigr)</math>. |
− | <p><u>Лемма о делении | + | <li>Неприводимые многочлены в <math>R[x]</math>: <math>\mathrm{Irr}(R[x])=(R[x]\!\setminus\!R^\times\!)\setminus\{g\,h\mid g,h\in R[x]\!\setminus\!R^\times\!\}</math>. Пример: <math>\{f\in K[x]\mid\deg f=1\}\subseteq\mathrm{Irr}(K[x])</math> (<math>K</math> — поле). |
+ | <li>Лемма о делении с остатком. Операции <math>\mathrm{div}</math> и <math>\mathrm{mod}</math> (старший коэфф.-т многочл. <math>f</math> обратим): <math>g=(g\;\mathrm{div}\;f)\,f+(g\;\mathrm{mod}\;f)</math> и <math>\deg(g\;\mathrm{mod}\;f)<\deg f</math>. | ||
+ | <p><u>Лемма о делении с остатком.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f,g\in R[x]</math> и старший коэффициент многочлена <math>f</math> обратим; тогда<br>существуют единственные такие многочлены <math>q,t\in R[x]</math>, что <math>g=q\,f+t</math> и <math>\deg t<\deg f</math>.</i></p> | ||
<li>Сопоставление многочлену полиномиальной функции <math>\biggl(\!\begin{align}\mathrm{pf}_A\colon R[x]&\to\mathrm{Func}(A,A)\\f_nx^n+\ldots+f_0&\mapsto\bigl(a\mapsto f_na^n+\ldots+f_0\bigr)\!\end{align}\!\biggr)</math> — гомоморфизм (<math>A</math> — комм. кольцо, <math>R\le A</math>). | <li>Сопоставление многочлену полиномиальной функции <math>\biggl(\!\begin{align}\mathrm{pf}_A\colon R[x]&\to\mathrm{Func}(A,A)\\f_nx^n+\ldots+f_0&\mapsto\bigl(a\mapsto f_na^n+\ldots+f_0\bigr)\!\end{align}\!\biggr)</math> — гомоморфизм (<math>A</math> — комм. кольцо, <math>R\le A</math>). | ||
<li>Обозначение: <math>f(a)=\bigl(\mathrm{pf}_A(f)\bigr)(a)</math>. Корни многочлена <math>f</math>: <math>\{r\in R\mid f(r)=0\}</math>. Теорема Безу. Теорема о корнях многочлена и следствие из нее. | <li>Обозначение: <math>f(a)=\bigl(\mathrm{pf}_A(f)\bigr)(a)</math>. Корни многочлена <math>f</math>: <math>\{r\in R\mid f(r)=0\}</math>. Теорема Безу. Теорема о корнях многочлена и следствие из нее. | ||
− | <p><u>Теорема Безу.</u> <i>Пусть <math>R</math> — коммутативное кольцо | + | <p><u>Теорема Безу.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f\in R[x]</math> и <math>r\in R</math>; тогда <math>f\;\mathrm{mod}\;(x-r)=f(r)</math> (и, значит, <math>(x-r)\,|\,f\;\Leftrightarrow\;f(r)=0</math>).</i></p> |
<p><u>Теорема о корнях многочлена.</u> <i>Пусть <math>R</math> — область целостности и <math>f\in R[x]\!\setminus\!\{0\}</math>; тогда <math>|\{r\in R\mid f(r)=0\}|\le\deg f</math>.</i></p> | <p><u>Теорема о корнях многочлена.</u> <i>Пусть <math>R</math> — область целостности и <math>f\in R[x]\!\setminus\!\{0\}</math>; тогда <math>|\{r\in R\mid f(r)=0\}|\le\deg f</math>.</i></p> | ||
<p><u>Следствие из теоремы о корнях многочлена.</u> <i>Пусть <math>R</math> — область целостности, <math>|R|=\infty</math>, <math>f\in R[x]</math> и <math>\forall\,r\in R\;\bigl(f(r)=0\bigr)</math>; тогда <math>f=0</math>.</i></p> | <p><u>Следствие из теоремы о корнях многочлена.</u> <i>Пусть <math>R</math> — область целостности, <math>|R|=\infty</math>, <math>f\in R[x]</math> и <math>\forall\,r\in R\;\bigl(f(r)=0\bigr)</math>; тогда <math>f=0</math>.</i></p> | ||
− | <li>Деление с остатком в кольце <math>K[x]</math>. Кольцо остатков: <math>K[x]/f=\{a\in K[x]\mid\deg a<\deg f\}</math> (<math>f\in K[x]\!\setminus\!\{0\}</math>). Утверждение: <math>K[x]/(f)\cong K[x]/f</math> | + | <li>Деление с остатком в кольце <math>K[x]</math>. Кольцо остатков: <math>K[x]/f=\{a\in K[x]\mid\deg a<\deg f\}</math> (<math>f\in K[x]\!\setminus\!\{0\}</math>). Утверждение: <math>K[x]/(f)\cong K[x]/f</math>.</ul> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<h5>1.3.3 Поле комплексных чисел</h5> | <h5>1.3.3 Поле комплексных чисел</h5> |
Версия 03:00, 26 мая 2017
1 Основы алгебры
| ||||||||||||
|
1.1 Множества, отображения, отношения
1.1.1 Множества
- Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
- Лемма о логических связках. Пусть , , — высказывания; тогда
(1) , , , ;
(2) , ;
(3) , , , . - Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
- Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
- Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
- Лемма об операциях над множествами. Пусть , , — множества; тогда
(1) , , , ;
(2) , ;
(3) если — множество и , то и . - Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
- — порядок (количество элементов) множества , — множество подмножеств множества , — -я степень множества ().
1.1.2 Отображения
- Множество отображений, действующих из мн.-ва в мн.-во : . Область, кообласть, график отображения : , , .
- Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
- Сужения отображения ( и ): и . Сокращенная запись образа: .
- Инъекции: . Сюръекции: .
- Биекции: . Композиция отображений: . Тождественное отображение: .
- Теорема о композиции отображений. Пусть , — множества и ; тогда
(1) , и, если , — множества, и , то ;
(2) если , то — инъекция, если и только если ;
(3) — сюръекция, если и только если ;
(4) — биекция, если и только если . - Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3 Отношения
- Множество отношений между множествами и : . Область, кообласть, график отношения : , , . Примеры.
- Отношения эквивалентности: .
- Класс эквивалентности: . Утверждение: . Фактормножество: .
- Разбиения: . Утверждение: . Трансверсали.
- Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
- Отношение : . Слои отображения : (). Факторотображение — биекция.
- Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .
1.2 Группы (часть 1)
1.2.1 Множества с операцией
- Внутренняя -арная операция на — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
- Гомоморфизмы между мн.-вами с операцией: .
- Утверждение: пусть и ; тогда . Изоморфизмы: .
- Утверждение: пусть ; тогда . Эндоморфизмы: . Автоморфизмы: .
- Обозначение по Минковскому: . Примеры: , , .
- Инфиксная запись бинарных операций. Ассоциативность: . Коммутативность: .
- Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).
1.2.2 Моноиды и группы (основные определения и примеры)
- Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
- Примеры: числовые моноиды, моноиды функций , моноиды слов и , моноиды отображений .
- Обратимые элементы: . Единственность обратного элемента. Утверждение: .
- Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
- Примеры: числовые группы, группы функций , свободные группы , группы биекций , группы изометрий .
- Мультипликативные обозначения в группе : , , и (). Аддитивные обозначения в абелевой группе : , , и ().
- Симметрические группы: . Запись перестановки в виде послед.-сти значений, цикловая запись перестановки. Лемма о циклах.
Лемма о циклах. Пусть , , числа попарно различны и ; тогда
, а также .
1.2.3 Подгруппы, классы смежности, циклические группы
- Подгруппа: . Подгруппа, порожденная мн.-вом : — наименьшая подгруппа, содержащая .
- Утверждение: , а также . Пример: .
- Отношения и : () и (). Утверждение: и .
- Множества классов смежности: и . Теорема Лагранжа. Индекс: .
Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).
- Порядок элемента: (). Утверждение: пусть ; тогда .
- Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
- Теорема об обратимых остатках.
(1) Пусть и ; тогда .
(2) Пусть ; тогда (в частности, если , то ).
(3) Пусть , и не делит ; тогда (это малая теорема Ферма). - Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.
Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .
1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп
- Нормальная подгруппа: . Пример: .
- Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
- Нормальная подгруппа, порожденная множеством : — наименьшая нормальная подгруппа, содержащая . Утверждение: .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — группы и ; тогда .
- Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
- Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то в пункте (2) условие "" можно заменить на условие "".
1.3 Кольца (часть 1)
1.3.1 Определения и конструкции, связанные с кольцами
- Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
- Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
- Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
- Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.
Теорема о гомоморфизме. Пусть — кольца и ; тогда .
- Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
- Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2 Кольца многочленов
- Кольцо многочленов от переменной над кольцом : ; отождествл.-е и ; общий вид многочлена: .
- Умножение многочленов. Степень и старший коэфф.-т многочлена. Утверждение: . Делимость в : .
- Неприводимые многочлены в : . Пример: ( — поле).
- Лемма о делении с остатком. Операции и (старший коэфф.-т многочл. обратим): и .
Лемма о делении с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
существуют единственные такие многочлены , что и . - Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
- Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.
Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).
Теорема о корнях многочлена. Пусть — область целостности и ; тогда .
Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .
- Деление с остатком в кольце . Кольцо остатков: (). Утверждение: .
1.3.3 Поле комплексных чисел
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Единичная окружность в : . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
(2) Для любых выполнено (и, значит, ). - Тригонометрическая форма компл. числа: . Утверждение: .
- Группа корней -й степени из : . Первообразный корень -й степени из .
- Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
- Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4 Тело кватернионов
- Кольцо кватернионов: , где , а также , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
- Лемма об умножении кватернионов. Сопряжение: . Утверждение: . Модуль: .
Лемма об умножении кватернионов. Для любых и выполнено .
- Теорема о свойствах кватернионов.
(1) Для любых выполнено и, если , то (и, значит, — тело).
(2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .