Алгебра phys 1 апрель–май — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 25: Строка 25:
 
<li><u>Теорема об обобщенных собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>c\in K</math>; тогда<br>(1) для любых <math>j\in\mathbb N_0</math> выполнено <math>V_j(a,c)\subseteq V_{j+1}(a,c)</math> и, если <math>V_j(a,c)=V_{j+1}(a,c)</math>, то <math>V_{j+1}(a,c)=V_{j+2}(a,c)</math>;<br>(2) для любых <math>j\in\mathbb N_0</math> выполнено <math>\beta(a,c)\le j\;\Leftrightarrow\,V_{\beta(a,c)}(a,c)=V_j(a,c)</math>;<br>(3) <math>\{0\}\subset V_1(a,c)\subset\ldots\subset V_{\beta(a,c)-1}(a,c)\subset V_{\beta(a,c)}(a,c)</math> и <math>V_{\beta(a,c)}(a,c)=V_{\beta(a,c)+1}(a,c)=\ldots=V_{\alpha(a,c)}(a,c)=\ldots</math>.</i>
 
<li><u>Теорема об обобщенных собственных подпространствах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и <math>c\in K</math>; тогда<br>(1) для любых <math>j\in\mathbb N_0</math> выполнено <math>V_j(a,c)\subseteq V_{j+1}(a,c)</math> и, если <math>V_j(a,c)=V_{j+1}(a,c)</math>, то <math>V_{j+1}(a,c)=V_{j+2}(a,c)</math>;<br>(2) для любых <math>j\in\mathbb N_0</math> выполнено <math>\beta(a,c)\le j\;\Leftrightarrow\,V_{\beta(a,c)}(a,c)=V_j(a,c)</math>;<br>(3) <math>\{0\}\subset V_1(a,c)\subset\ldots\subset V_{\beta(a,c)-1}(a,c)\subset V_{\beta(a,c)}(a,c)</math> и <math>V_{\beta(a,c)}(a,c)=V_{\beta(a,c)+1}(a,c)=\ldots=V_{\alpha(a,c)}(a,c)=\ldots</math>.</i>
 
<li>Корневые подпространства: <math>V(a,c)=V_{\beta(a,c)}(a,c)=V_{\alpha(a,c)}(a,c)</math>. Нильпотентные части линейного оператора <math>a</math>: <math>\mathrm{nil}(a,c)=a|_{V(a,c)\to V(a,c)}\!-c\cdot\mathrm{id}_{V(a,c)}</math>.
 
<li>Корневые подпространства: <math>V(a,c)=V_{\beta(a,c)}(a,c)=V_{\alpha(a,c)}(a,c)</math>. Нильпотентные части линейного оператора <math>a</math>: <math>\mathrm{nil}(a,c)=a|_{V(a,c)\to V(a,c)}\!-c\cdot\mathrm{id}_{V(a,c)}</math>.
<li><u>Теорема о разложении в прямую сумму корневых подпространств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено<br>для любых <math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда<br>(1) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму корневых подпространств линейного оператора <math>a</math>);<br>(2) для любых <math>c\in K</math> выполнено <math>\forall\,j\in\mathbb N_0\,\bigl(\mathrm{Ker}\,\mathrm{nil}(a,c)^j=V_j(a,c)\bigr)</math>, <math>\mathrm{nil}(a,c)</math> — нильпотентный линейный оператор и <math>\dim V(a,c)=\alpha(a,c)</math>.</i></ul>
+
<li><u>Теорема о разложении в прямую сумму корневых подпространств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено<br>для любых линейных операторов <math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда<br>(1) <math>V=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!V(a,c)</math> (то есть пространство <math>V</math> раскладывается в прямую сумму корневых подпространств линейного оператора <math>a</math>);<br>(2) для любых <math>c\in K</math> имеем следующие факты: <math>\mathrm{nil}(a,c)^{\beta(a,c)}=0</math> (и, значит, <math>\mathrm{nil}(a,c)</math> — нильпотентный лин. оператор) и <math>\dim V(a,c)=\alpha(a,c)</math>.</i></ul>
  
 
<h5>2.3.3&nbsp; Относительные базисы, жорданова нормальная форма, приложения жордановой нормальной формы</h5>
 
<h5>2.3.3&nbsp; Относительные базисы, жорданова нормальная форма, приложения жордановой нормальной формы</h5>
Строка 34: Строка 34:
 
<u>Теорема 3 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>U'\le U\le V</math>, <math>E</math> — базис в <math>V</math> относительно <math>U</math> и<br><math>E'</math> — базис в <math>U</math> относительно <math>U'</math>; тогда <math>E\cap E'=\varnothing</math> и <math>E\cup E'</math> — базис в <math>V</math> относительно <math>U'</math>.</i></p>
 
<u>Теорема 3 об относительных базисах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>U'\le U\le V</math>, <math>E</math> — базис в <math>V</math> относительно <math>U</math> и<br><math>E'</math> — базис в <math>U</math> относительно <math>U'</math>; тогда <math>E\cap E'=\varnothing</math> и <math>E\cup E'</math> — базис в <math>V</math> относительно <math>U'</math>.</i></p>
 
<li><u>Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math> и<br><math>a\in\mathrm{End}(V)</math>, а также <math>j\in\mathbb N</math>, <math>V_{j-1}=\mathrm{Ker}\,a^{j-1}</math>, <math>V_j=\mathrm{Ker}\,a^j</math> и <math>V_{j+1}=\mathrm{Ker}\,a^{j+1}</math>; тогда<br>(1) если <math>C</math> — независимое подмножество в <math>V_{j+1}</math> относит.-но <math>V_j</math>, то <math>a|_C</math> — инъекция и <math>a(C)</math> — независимое подмножество в <math>V_j</math> относит.-но <math>V_{j-1}</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V_j-\dim V_{j-1}\ge\dim V_{j+1}-\dim V_j</math>.</i>
 
<li><u>Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. простр.-во над полем <math>K</math> и<br><math>a\in\mathrm{End}(V)</math>, а также <math>j\in\mathbb N</math>, <math>V_{j-1}=\mathrm{Ker}\,a^{j-1}</math>, <math>V_j=\mathrm{Ker}\,a^j</math> и <math>V_{j+1}=\mathrm{Ker}\,a^{j+1}</math>; тогда<br>(1) если <math>C</math> — независимое подмножество в <math>V_{j+1}</math> относит.-но <math>V_j</math>, то <math>a|_C</math> — инъекция и <math>a(C)</math> — независимое подмножество в <math>V_j</math> относит.-но <math>V_{j-1}</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V_j-\dim V_{j-1}\ge\dim V_{j+1}-\dim V_j</math>.</i>
<li>Прямая сумма матриц: <math>a\oplus b</math>. Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)=\mathrm{jc}_{n_1}\!(c)\oplus\ldots\oplus\mathrm{jc}_{n_r}\!(c)</math>, где <math>n_1,\ldots,n_r</math> — длины строк диаграммы Юнга <math>\Delta</math>.
+
<li>Диаграммы Юнга. Жорданов блок: <math>\mathrm{jb}_\Delta(c)</math> — прямая сумма жордановых клеток <math>\mathrm{jc}_{n_1}\!(c),\ldots,\mathrm{jc}_{n_r}\!(c)</math>, где <math>n_1,\ldots,n_r</math> — длины строк диаграммы Юнга <math>\Delta</math>.
 
<li>Диаграмма Юнга <math>\Delta(a,c)</math>: высоты столбцов диаграммы <math>\Delta(a,c)</math> — относительные геометрич. кратности <math>\gamma_1(a,c),\ldots,\gamma_{\beta(a,c)}(a,c)</math>. Корректность опред.-я.
 
<li>Диаграмма Юнга <math>\Delta(a,c)</math>: высоты столбцов диаграммы <math>\Delta(a,c)</math> — относительные геометрич. кратности <math>\gamma_1(a,c),\ldots,\gamma_{\beta(a,c)}(a,c)</math>. Корректность опред.-я.
 
<li>Теорема о жордановой нормальной форме. Обозначение: <math>\mathrm{jnf}(a)</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^\underline e\!\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_\underline e^e</math></i>.
 
<li>Теорема о жордановой нормальной форме. Обозначение: <math>\mathrm{jnf}(a)</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^\underline e\!\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_\underline e^e</math></i>.
<p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>a\in\mathrm{End}(V)</math>; тогда<br>(1) если <math>a</math> — нильпотентный линейный оператор, то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\mathrm{jb}_{\Delta(a,0)}(0)</math>;<br>(2) если многочлен <math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>), то существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e=\!\!\!\bigoplus_{c\in\mathrm{Spec}(a)}\!\!\!\mathrm{jb}_{\Delta(a,c)}(c)</math>.</i></p>
+
<p><u>Теорема о жордановой нормальной форме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>a\in\mathrm{End}(V)</math> и многочлен<br><math>\chi_a</math> раскладывается в произведение многочленов степени <math>1</math> в кольце <math>K[x]</math> (если <math>K=\mathbb C</math>, то это условие выполнено для любых линейных операторов<br><math>a\in\mathrm{End}(V)</math> в силу алгебраической замкнутости поля <math>\,\mathbb C</math>); тогда существует такой упорядоченный базис <math>e\in\mathrm{OB}(V)</math>, что <math>a_e^e</math> — прямая сумма<br>жордановых блоков <math>\,\mathrm{jb}_{\Delta(a,c)}(c)</math> по всем <math>c\in\mathrm{Spec}(a)</math>.</i></p>
 
<li>Многочлен (ряд) от жордановой клетки: <math>f(\mathrm{jc}_n(c))=\sum_{k=0}^{n-1}\frac{f^{(k)}(c)}{k!}\,\mathrm{jc}_n(0)^k</math>. Экспонента от лин. операт. <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты.
 
<li>Многочлен (ряд) от жордановой клетки: <math>f(\mathrm{jc}_n(c))=\sum_{k=0}^{n-1}\frac{f^{(k)}(c)}{k!}\,\mathrm{jc}_n(0)^k</math>. Экспонента от лин. операт. <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты.
 
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Пусть <math>V</math> — банахово пространство и <math>a,b\in\mathrm C^0\mathrm{End}(V)</math>; тогда <math>a\circ b=b\circ a\,\Rightarrow\,\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math>, а также <math>\mathrm e^0\!=\mathrm{id}_V\!</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда <math>\det\mathrm e^a\!=\mathrm e^{\mathrm{tr}\,a}</math>, а также <math>\mathrm e^{a^\mathtt T}\!\!=(\mathrm e^a)^\mathtt T\!</math> и <math>\mathrm e^{\overline a^\mathtt T}\!\!=\bigl(\overline{\mathrm e^a}\bigr)^\mathtt T</math>.</i></p>
 
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Пусть <math>V</math> — банахово пространство и <math>a,b\in\mathrm C^0\mathrm{End}(V)</math>; тогда <math>a\circ b=b\circ a\,\Rightarrow\,\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math>, а также <math>\mathrm e^0\!=\mathrm{id}_V\!</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Пусть <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,\mathbb C)</math>; тогда <math>\det\mathrm e^a\!=\mathrm e^{\mathrm{tr}\,a}</math>, а также <math>\mathrm e^{a^\mathtt T}\!\!=(\mathrm e^a)^\mathtt T\!</math> и <math>\mathrm e^{\overline a^\mathtt T}\!\!=\bigl(\overline{\mathrm e^a}\bigr)^\mathtt T</math>.</i></p>
<li>Однородная система линейных дифференциальных уравнений: <math>y'=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>); решение системы: <math>y(x)=\mathrm e^{xa}\!\cdot v</math>, где <math>v\in\mathbb C^n</math>.</ul>
+
<li>Однородная система линейных дифференциальных уравн.-й: <math>\frac{\mathrm dy}{\mathrm dt}=a\cdot y</math> (<math>y\in\mathrm C^1\!(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>). Решение системы: <math>y(t)=\mathrm e^{ta}\!\cdot v</math>, где <math>v\in\mathbb C^n</math>.</ul>
  
 
<h3>2.4&nbsp; Алгебры</h3>
 
<h3>2.4&nbsp; Алгебры</h3>

Версия 04:30, 22 апреля 2017

2  Линейная алгебра

2.3  Линейные операторы (часть 2)

2.3.1  Многочлены от линейных операторов, спектр и характеристический многочлен линейного оператора
  • Эвалюация — гомоморфизм. Кольцо, порожденное лин. оператором : .
  • Минимальный многочлен лин. оператора : , нормирован, ; .
  • Теорема о ядрах многочленов от линейного оператора. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если , то (то есть -инвариантное подпространство);
    (2) если и делит , то ;
    (3) если , и многочлены попарно взаимно просты, то
    (и, значит, ).
  • Проектор (идемпотент): . Отражение: (здесь ).
  • Собственные число и вектор лин. операт. : . Спектр лин. операт. : . Лемма о спектре.

    Лемма о спектре. Пусть — поле, — векторное простр.-во над полем и ; тогда
    и, если , то "" можно заменить на "".

  • Характеристический многочлен матрицы : . Характеристический многочлен лин. оператора : . Корректность опред.-я.
  • След линейного оператора : . Корректность определения. Теорема о спектре и характеристическом многочлене. Теорема Гамильтона–Кэли.

    Теорема о спектре и характеристическом многочлене. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) (и, значит, );
    (2) ;
    (3) если (то есть — нильпотентный линейный оператор), то .

    Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .

  • Кратности: (алгебраич. кратность), . Теорема о минимальном многочлене.

    Теорема о минимальном многочлене. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) делит (и, значит, для любых выполнено );
    (2) .

2.3.2  Собственные, обобщенные собственные и корневые подпространства линейного оператора
  • Собственные подпространства: ; геометрическая кратность: . Лемма о собственных подпространствах.

    Лемма о собственных подпространствах. Пусть — поле, — векторное пространство над полем , , , и
    попарно различны; тогда
    (1) ;
    (2) если и — независимые множества, то — независимое множество;
    (3) если , то для любых выполнено .

  • Теорема о диагонализуемых линейных операторах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие утверждения эквивалентны:
    (у1) существует такой упорядоченный базис , что — диагональная матрица;
    (у2) (то есть многочлен раскладывается без кратностей в произведение многочленов степени в кольце );
    (у3) (то есть пространство раскладывается в прямую сумму собственных подпространств линейного оператора );
    (у4) .
  • Обобщенные собственные подпростр.-ва: ; относительные геометрич. кратности: .
  • Жорданова клетка: ; если , то и .
  • Теорема об обобщенных собственных подпространствах. Пусть — поле, — вект. пр.-во над , , и ; тогда
    (1) для любых выполнено и, если , то ;
    (2) для любых выполнено ;
    (3) и .
  • Корневые подпространства: . Нильпотентные части линейного оператора : .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено
    для любых линейных операторов в силу алгебраической замкнутости поля ); тогда
    (1) (то есть пространство раскладывается в прямую сумму корневых подпространств линейного оператора );
    (2) для любых имеем следующие факты: (и, значит, — нильпотентный лин. оператор) и .
2.3.3  Относительные базисы, жорданова нормальная форма, приложения жордановой нормальной формы
  • — независимое мн.-во относит.-но : . — порождающее мн.-во относит.-но : .
  • Базис в относительно — независ. и порожд. подмн.-во в относительно . Три теоремы об относительных базисах (без подробных доказательств).

    Теорема 1 об относительных базисах. Пусть — поле, — вект. пр.-во над , и ; тогда следующие утверждения эквивалентны:
    (у1) — базис пространства относительно ;
    (у2) — независимое множество и ;
    (у3) для любого вектора существуют единственные такие и , что ;
    (у4) — максимальное независимое множество относительно ;
    (у5) — минимальное порождающее множество относительно .

    Теорема 2 об относительных базисах. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого порождающего подмножества в относительно можно выделить базис в относительно .

    Теорема 3 об относительных базисах. Пусть — поле, — векторное пространство над полем , , — базис в относительно и
    — базис в относительно ; тогда и — базис в относительно .

  • Теорема об относительно независимых подмножествах в ядрах степеней линейного оператора. Пусть — поле, — вект. простр.-во над полем и
    , а также , , и ; тогда
    (1) если — независимое подмножество в относит.-но , то — инъекция и — независимое подмножество в относит.-но ;
    (2) если , то .
  • Диаграммы Юнга. Жорданов блок: — прямая сумма жордановых клеток , где — длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы — относительные геометрич. кратности . Корректность опред.-я.
  • Теорема о жордановой нормальной форме. Обозначение: . Утверждение: пусть и ; тогда .

    Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , , и многочлен
    раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для любых линейных операторов
    в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что — прямая сумма
    жордановых блоков по всем .

  • Многочлен (ряд) от жордановой клетки: . Экспонента от лин. операт. : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Пусть — банахово пространство и ; тогда , а также и .
    (2) Пусть и ; тогда , а также и .

  • Однородная система линейных дифференциальных уравн.-й: (, ). Решение системы: , где .

2.4  Алгебры

2.4.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — вект. пространство над с билинейным умножением — кольцо (в широком смысле слова) с «правильным» умножением на скаляры из .
  • Примеры: -алгебры , , , , , ; -алгебры , , , и с векторным умножением.
  • Структурные константы алгебры: . Утверждение: массив однозначно определяет умножение в алгебре .
  • Теорема Кэли для ассоциативных алгебр с 1. Инъект. гомоморфизмы -алгебр: и .

    Теорема Кэли для ассоциативных алгебр с 1. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство
    над полем , получающееся из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — инъективный гомоморфизм алгебр с .

  • Алгебры с делением: и . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
  • Моноидная алгебра ( — моноид): с операцией свертки; способ записи элементов: ().
  • Алгебра многочленов от свободных переменных: . Одночлены: . Степень. Однородные многочлены.
2.4.2  Алгебра полилинейных форм
  • Тензорное произведение полилинейных форм: . Свойства тензорного произведения.
  • Базис в пространстве : . Разложение формы по базису: .
  • Обозначение: . Пример: . Преобразов.-е при замене базиса: .
  • Алгебра полилинейных форм (ковариантных тензоров) над : . Утверждение: — ассоциативная -алгебра с .
  • Теорема об алгебре полилинейных форм. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с ;
    (2) для любых изоморфизм из пункта (1) отображает пространство однородных многочленов степени в пространство .
  • Идеалы и : и .
  • Алгебра многочленов от коммутирующих переменных: . Утверждение: .
  • Алгебра многочленов от грассмановых переменных: . Грассмановы одночлены: , где .
2.4.3  Алгебры Ли (основные определения и примеры)
  • -Алгебра Ли — -алгебра, умножение в которой антисимметрично () и удовлетворяет тождеству Якоби ().
  • Коммутатор в ассоциативной алгебре : . Алгебра : вект. простр.-во с операцией . Утверждение: алгебра — алгебра Ли.
  • Примеры: , , с векторным умножением — алгебра Ли, так как в алгебре Ли .
  • Матричные алгебры Ли: , , , , .
  • Утверждение: и (здесь или ), а также , , .
  • Теорема Кэли для алгебр Ли. Изоморфизмы -алгебр Ли: , и .

    Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; обозначим через векторное пространство над полем , получающееся
    из алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор (то есть );
    (2) отображение — гомоморфизм алгебр Ли.

  • Алгебра дифференцирований -алгебры : — подалгебра алгебры Ли .
  • Пример: пусть — открытое подмножество в и ; тогда — дифференцирование алгебры .