Машинное обучение 2017 — различия между версиями
Ekaterina (обсуждение | вклад) (→Летучки в начале лекции.) |
Ekaterina (обсуждение | вклад) (→Дополнительные источники по машинному обучению) |
||
Строка 51: | Строка 51: | ||
* G. James, D. Witten, T. Hastie, R. Tibshirani: [http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf "An Introduction to Statistical Learning"] | * G. James, D. Witten, T. Hastie, R. Tibshirani: [http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf "An Introduction to Statistical Learning"] | ||
* Kevin P. Murphy [http://www.huang-jianhua.com/download/Machine_Learning-_A_Probabilistic_Perspective.pdf "Machine Learning: A Probabilistic Perspective"] | * Kevin P. Murphy [http://www.huang-jianhua.com/download/Machine_Learning-_A_Probabilistic_Perspective.pdf "Machine Learning: A Probabilistic Perspective"] | ||
+ | * Professor Yaser Abu-Mostafa [http://work.caltech.edu/telecourse.html MOOC] | ||
* К.В. Воронцов: [http://shad.yandex.ru/lectures/machine_learning.xml видеолекции 2014], [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 материалы] (в т.ч. [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf пособие]) | * К.В. Воронцов: [http://shad.yandex.ru/lectures/machine_learning.xml видеолекции 2014], [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 материалы] (в т.ч. [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf пособие]) | ||
* Andrew Ng http://ml-class.org/ | * Andrew Ng http://ml-class.org/ |
Версия 15:22, 6 марта 2017
Лекции — Екатерина Тузова (kt@jetbrains.com)
Содержание
Лекции
1. 15 февраля, "Введение"
2. 22 февраля, "Метрические классификаторы"
3. 1 марта, "Кластеризация"
4. 15 марта, "Деревья принятия решений"
5. 22 марта, "Байесовские методы классификации"
6. 29 марта, "Перцептрон"
7. 5 апреля, "Функционалы качества"
8. 12 апреля, "Нейронные сети"
9. 19 апреля, "Метод опорных векторов"
10. 26 апреля, "Линейная регрессия"
11. 3 мая, "Анализ смещения и разброса"
12. 17 мая, "Методы восстановления регрессии"
13. 24 мая, "Ансамбли"
Домашние задания.
Адрес, на который надо присылать решения -- machine.teaching@gmail.com.
В теме письма должно быть написано "Домашняя работа N Иванов", где вместо Иванов надо поставить свою фамилию, а вместо N -- номер домашней работы.
1. Соседи и вино
Дедлайн (20 баллов): 03.03.17 23:59
Дедлайн (10 баллов): 10.03.17 23:59
Условие — Домашнее задание 1
2. Comic-Con и k-means
Дедлайн (20 баллов): 10.03.17 23:59
Дедлайн (10 баллов): 17.03.17 23:59
Условие — Домашнее задание 2
Летучки в начале лекции.
Результаты
12 опросов по 5 баллов в начале лекции.
8 домашних заданий по 20 баллов при сдаче в первую неделю, 10 баллов при сдаче во вторую неделю.
Экзамен 180 баллов
Оценки за курс: 300 баллов -- отлично, 250 баллов -- хорошо, 200 баллов -- удовлетворительно
Дополнительные источники по машинному обучению
- Christopher M. Bishop "Pattern Recognition and Machine Learning"
- G. James, D. Witten, T. Hastie, R. Tibshirani: "An Introduction to Statistical Learning"
- Kevin P. Murphy "Machine Learning: A Probabilistic Perspective"
- Professor Yaser Abu-Mostafa MOOC
- К.В. Воронцов: видеолекции 2014, материалы (в т.ч. пособие)
- Andrew Ng http://ml-class.org/
- Примеры реализации алгоритмов на Python: Программируем коллективный разум
- Ullman, Leskovec, Rajaraman "Mining of Massive Datasets"