Машинное обучение 2017 — различия между версиями
Материал из SEWiki
Ekaterina (обсуждение | вклад) (→Результаты) |
Ekaterina (обсуждение | вклад) (→Дополнительные источники по машинному обучению) |
||
Строка 21: | Строка 21: | ||
== Дополнительные источники по машинному обучению == | == Дополнительные источники по машинному обучению == | ||
− | |||
* Christopher M. Bishop [http://www.rmki.kfki.hu/~banmi/elte/Bishop%20-%20Pattern%20Recognition%20and%20Machine%20Learning.pdf "Pattern Recognition and Machine Learning"] | * Christopher M. Bishop [http://www.rmki.kfki.hu/~banmi/elte/Bishop%20-%20Pattern%20Recognition%20and%20Machine%20Learning.pdf "Pattern Recognition and Machine Learning"] | ||
+ | * G. James, D. Witten, T. Hastie, R. Tibshirani: [http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf "An Introduction to Statistical Learning"] | ||
* Kevin P. Murphy [http://www.huang-jianhua.com/download/Machine_Learning-_A_Probabilistic_Perspective.pdf "Machine Learning: A Probabilistic Perspective"] | * Kevin P. Murphy [http://www.huang-jianhua.com/download/Machine_Learning-_A_Probabilistic_Perspective.pdf "Machine Learning: A Probabilistic Perspective"] | ||
* К.В. Воронцов: [http://shad.yandex.ru/lectures/machine_learning.xml видеолекции 2014], [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 материалы] (в т.ч. [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf пособие]) | * К.В. Воронцов: [http://shad.yandex.ru/lectures/machine_learning.xml видеолекции 2014], [http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%28%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9A.%D0%92.%D0%92%D0%BE%D1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%B2%29 материалы] (в т.ч. [http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf пособие]) |
Версия 17:13, 8 февраля 2017
Лекции — Екатерина Тузова (kt@jetbrains.com)
Содержание
Лекции
Домашние задания.
Адрес, на который надо присылать решения -- machine.teaching@gmail.com.
В теме письма должно быть написано "Домашняя работа N Иванов", где вместо Иванов надо поставить свою фамилию, а вместо N -- номер домашней работы.
Летучки в начале лекции.
Результаты
12 опросов по 5 баллов в начале лекции.
8 домашних заданий по 20 баллов при сдаче в первую неделю, 10 баллов при сдаче во вторую неделю.
Экзамен 180 баллов
Оценки за курс: 300 баллов -- отлично, 250 баллов -- хорошо, 200 баллов -- удовлетворительно
Дополнительные источники по машинному обучению
- Christopher M. Bishop "Pattern Recognition and Machine Learning"
- G. James, D. Witten, T. Hastie, R. Tibshirani: "An Introduction to Statistical Learning"
- Kevin P. Murphy "Machine Learning: A Probabilistic Perspective"
- К.В. Воронцов: видеолекции 2014, материалы (в т.ч. пособие)
- Andrew Ng http://ml-class.org/
- Примеры реализации алгоритмов на Python: Программируем коллективный разум
Дополнительные заметки
- Mining of Massive Datasets (Ullman, Leskovec, Rajaraman) (в частности, разделы 3.4—3.8 про Locality-Sensitive Hashing, еще в книге много других интересных подходов для больших объемов данных, в т.ч. MapReduce, PageRank)