Алгебра phys 2 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
 
(не показано 7 промежуточных версий этого же участника)
Строка 1: Строка 1:
 
__NOTOC__
 
__NOTOC__
 
<h2>Подробный план второй половины третьего семестра курса алгебры</h2>
 
<h2>Подробный план второй половины третьего семестра курса алгебры</h2>
<table cellpadding="6" cellspacing="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>In the 20th century, the subject came to be known as <i>tensor analysis</i>, and achieved broader acceptance with the introduction of Einstein's<br>theory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about<br>them, with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct<br>mistakes Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect:<br>"I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while<br>the like of us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).</td></tr><tr align="right"><td>[https://en.wikipedia.org/wiki/Tensor<i>Статья «Tensor» в англоязычной Википедии</i>]</td></tr></table></td></tr></table>
 
  
 
<h3>14&nbsp;&nbsp; Тензорные произведения векторных пространств</h3>
 
<h3>14&nbsp;&nbsp; Тензорные произведения векторных пространств</h3>
Строка 23: Строка 21:
 
<li>Преобразование при замене базиса: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!(e_{k_1})^\tilde{i_1}\!\ldots(e_{k_p})^\tilde{i_p}(e_\tilde{j_1})^{l_1}\!\ldots(e_\tilde{j_q})^{l_q}\;T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}</math>. Примеры: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>, <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
 
<li>Преобразование при замене базиса: <math>T^{\tilde{i_1},\ldots,\tilde{i_p}}_{\tilde{j_1},\ldots,\tilde{j_q}}=\!\!\!\!\sum_{k_1,\ldots,k_p,l_1,\ldots,l_q}\!\!\!\!(e_{k_1})^\tilde{i_1}\!\ldots(e_{k_p})^\tilde{i_p}(e_\tilde{j_1})^{l_1}\!\ldots(e_\tilde{j_q})^{l_q}\;T^{k_1,\ldots,k_p}_{l_1,\ldots,l_q}</math>. Примеры: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>, <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
 
<li>Тензорная алгебра над <math>V</math>: <math>\mathcal T(V)=\bigoplus_{k=0}^\infty\mathcal T^kV</math> — ассоциативная <math>K</math>-алгебра с <math>1</math> (в опр.-и умнож.-я используются изоморфизмы <math>\mathcal T^kV\otimes\mathcal T^{k'}\!V\cong\mathcal T^{k+k'}\!V</math>).
 
<li>Тензорная алгебра над <math>V</math>: <math>\mathcal T(V)=\bigoplus_{k=0}^\infty\mathcal T^kV</math> — ассоциативная <math>K</math>-алгебра с <math>1</math> (в опр.-и умнож.-я используются изоморфизмы <math>\mathcal T^kV\otimes\mathcal T^{k'}\!V\cong\mathcal T^{k+k'}\!V</math>).
<li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых его элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>\,e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> выполнено<br><math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math>, а также <math>\,\mathcal T(V)\cong K_\otimes[x_1,\ldots,x_n]</math> — алгебра многочленов от своб. перем.-х.</i></ul>
+
<li><u>Теорема о тензорной алгебре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда множество<br><math>\bigcup_{k=0}^\infty\,\{e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\}\}</math> — базис алгебры <math>\,\mathcal T(V)</math>, и для любых его элементов <math>e_{i_1}\!\otimes\ldots\otimes e_{i_k}</math> и <math>\,e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math> выполнено<br><math>(e_{i_1}\!\otimes\ldots\otimes e_{i_k})\otimes(e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!)=e_{i_1}\!\otimes\ldots\otimes e_{i_k}\!\otimes e_{i_1'}\!\otimes\ldots\otimes e_{i_{k'}'}\!</math>, а также <math>\,\mathcal T(V)\cong K\langle x_1,\ldots,x_n\rangle</math> — алгебра многочленов от своб. перем.-х.</i></ul>
  
 
<h5>14.3&nbsp; Операции над тензорами типа <math>(p,q)</math></h5>
 
<h5>14.3&nbsp; Операции над тензорами типа <math>(p,q)</math></h5>
Строка 42: Строка 40:
 
<li>Оператор симметризации: <math>\mathrm{sym}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{pat}_u</math>. Оператор альтернирования: <math>\mathrm{alt}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,\mathrm{pat}_u</math>. Лемма о симметризации и альтернировании.
 
<li>Оператор симметризации: <math>\mathrm{sym}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{pat}_u</math>. Оператор альтернирования: <math>\mathrm{alt}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,\mathrm{pat}_u</math>. Лемма о симметризации и альтернировании.
 
<p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{pat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k\circ\mathrm{pat}_u=\mathrm{sym}_k</math> и <math>\mathrm{pat}_u\!\circ\mathrm{alt}_k=\mathrm{alt}_k\circ\mathrm{pat}_u=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, а также <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (и, значит, <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p>
 
<p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{pat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k\circ\mathrm{pat}_u=\mathrm{sym}_k</math> и <math>\mathrm{pat}_u\!\circ\mathrm{alt}_k=\mathrm{alt}_k\circ\mathrm{pat}_u=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, а также <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (и, значит, <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p>
<li>Симметрич. и внешнее произв.-е векторов: <math>v_1\cdot\ldots\cdot v_k=\mathrm{sym}_k(v_1\otimes\ldots\otimes v_k)</math> и <math>v_1\wedge\ldots\wedge v_k=k!\,\mathrm{alt}_k(v_1\otimes\ldots\otimes v_k)</math>. Пример: <math>\mathrm{vol}^e\!=e^1\wedge\ldots\wedge e^n</math>.
+
<li>Симметрич. и внешнее произв.-я векторов: <math>v_1\cdot\ldots\cdot v_k=\mathrm{sym}_k(v_1\otimes\ldots\otimes v_k)</math> и <math>v_1\wedge\ldots\wedge v_k=k!\,\mathrm{alt}_k(v_1\otimes\ldots\otimes v_k)</math>. Пример: <math>\mathrm{vol}^e\!=e^1\wedge\ldots\wedge e^n</math>.
 
<li><u>Лемма к теореме об универсальности симметрической степени и внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр. над <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) <math>\mathsf S^kV=\bigl\langle\{v_1\cdot\ldots\cdot v_k\mid v_1,\ldots,v_k\in V\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V^k\!&\to\mathsf S^kV\\(v_1,\ldots,v_k)&\mapsto v_1\cdot\ldots\cdot v_k\end{align}\!\biggr)</math> — симметричный полилинейный оператор;<br>(2) <math>\mathsf\Lambda^kV=\bigl\langle\{v_1\wedge\ldots\wedge v_k\mid v_1,\ldots,v_k\in V\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V^k\!&\to\mathsf\Lambda^kV\\(v_1,\ldots,v_k)&\mapsto v_1\wedge\ldots\wedge v_k\end{align}\!\biggr)</math> — антисимметричный полилинейный оператор.</i>
 
<li><u>Лемма к теореме об универсальности симметрической степени и внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр. над <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) <math>\mathsf S^kV=\bigl\langle\{v_1\cdot\ldots\cdot v_k\mid v_1,\ldots,v_k\in V\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V^k\!&\to\mathsf S^kV\\(v_1,\ldots,v_k)&\mapsto v_1\cdot\ldots\cdot v_k\end{align}\!\biggr)</math> — симметричный полилинейный оператор;<br>(2) <math>\mathsf\Lambda^kV=\bigl\langle\{v_1\wedge\ldots\wedge v_k\mid v_1,\ldots,v_k\in V\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V^k\!&\to\mathsf\Lambda^kV\\(v_1,\ldots,v_k)&\mapsto v_1\wedge\ldots\wedge v_k\end{align}\!\biggr)</math> — антисимметричный полилинейный оператор.</i>
 
<li><u>Теорема об универсальности симметрической степени и внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V,Y</math> — вект. пр.-ва над <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{SMulti}_k(V,Y)</math> существует единственный такой <math>a\in\mathrm{Hom}(\mathsf S^kV,Y)</math>, что <math>\forall\,v_1,\ldots,v_k\in V\;\bigl(a(v_1\cdot\ldots\cdot v_k)=\omega(v_1,\ldots,v_k)\bigr)</math>;<br>(2) для любых <math>\omega\in\mathrm{AMulti}_k(V,Y)</math> существует единственный такой <math>a\in\mathrm{Hom}(\mathsf\Lambda^kV,Y)</math>, что <math>\forall\,v_1,\ldots,v_k\in V\;\bigl(a(v_1\wedge\ldots\wedge v_k)=\omega(v_1,\ldots,v_k)\bigr)</math>.</i>
 
<li><u>Теорема об универсальности симметрической степени и внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V,Y</math> — вект. пр.-ва над <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{SMulti}_k(V,Y)</math> существует единственный такой <math>a\in\mathrm{Hom}(\mathsf S^kV,Y)</math>, что <math>\forall\,v_1,\ldots,v_k\in V\;\bigl(a(v_1\cdot\ldots\cdot v_k)=\omega(v_1,\ldots,v_k)\bigr)</math>;<br>(2) для любых <math>\omega\in\mathrm{AMulti}_k(V,Y)</math> существует единственный такой <math>a\in\mathrm{Hom}(\mathsf\Lambda^kV,Y)</math>, что <math>\forall\,v_1,\ldots,v_k\in V\;\bigl(a(v_1\wedge\ldots\wedge v_k)=\omega(v_1,\ldots,v_k)\bigr)</math>.</i>
Строка 52: Строка 50:
 
<li>Симметриз.-я и альтерн.-е в коорд.: <math>T^{(i_1,\ldots,i_k)}\!=\bigl(\mathrm{sym}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}T^{i_{u(1)},\ldots,i_{u(k)}}</math> и <math>T^{[i_1,\ldots,i_k]}\!=\bigl(\mathrm{alt}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,T^{i_{u(1)},\ldots,i_{u(k)}}</math>.
 
<li>Симметриз.-я и альтерн.-е в коорд.: <math>T^{(i_1,\ldots,i_k)}\!=\bigl(\mathrm{sym}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}T^{i_{u(1)},\ldots,i_{u(k)}}</math> и <math>T^{[i_1,\ldots,i_k]}\!=\bigl(\mathrm{alt}_k(T)\bigr)^{i_1,\ldots,i_k}\!=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,T^{i_{u(1)},\ldots,i_{u(k)}}</math>.
 
<li>Симметрическое и внешнее произв. в коорд.: <math>\bigl(T\cdot T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=T\!\phantom'^{(i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}')}</math> и <math>\bigl(T\wedge T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=\frac{(k+k')!}{k!\,k'!}\,T\!\phantom'^{[i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}']}</math>.
 
<li>Симметрическое и внешнее произв. в коорд.: <math>\bigl(T\cdot T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=T\!\phantom'^{(i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}')}</math> и <math>\bigl(T\wedge T'\bigr)^{i_1,\ldots,i_k,i_1',\ldots,i_{k'}'}\!=\frac{(k+k')!}{k!\,k'!}\,T\!\phantom'^{[i_1,\ldots,i_k}\!\cdot{T'}^{i_1',\ldots,i_{k'}']}</math>.
<li><u>Теорема о симметрическом произведении и внешнем произведении тензоров.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное простр.-во над полем <math>K</math>,<br><math>k,k',k''\!\in\mathbb N_0</math>, <math>v_1,\ldots,v_k,v_1',\ldots,v_{k'}'\!\in V</math> и <math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>, <math>T''\!\in\mathcal T^{k''}\!V</math>; тогда<br>(1) <math>(v_1\otimes\ldots\otimes v_k)\cdot(v_1'\otimes\ldots\otimes v_{k'}')=v_1\cdot\ldots\cdot v_k\cdot v_1'\cdot\ldots\cdot v_{k'}'</math> и <math>(v_1\otimes\ldots\otimes v_k)\wedge(v_1'\otimes\ldots\otimes v_{k'}')=\frac1{k!\,k'!}\,v_1\wedge\ldots\wedge v_k\wedge v_1'\wedge\ldots\wedge v_{k'}'</math>;<br>(2) <math>\mathrm{sym}_k(T)\cdot T'=T\cdot\mathrm{sym}_{k'}(T')=T\cdot T'</math> и <math>\mathrm{alt}_k(T)\wedge T'=T\wedge\mathrm{alt}_{k'}(T')=T\wedge T'</math>;<br>(3) <math>(T\cdot T')\cdot T''=T\cdot(T'\cdot T'')=\mathrm{sym}_{k+k'+k''}(T\otimes T'\otimes T'')</math> и <math>(T\wedge T')\wedge T''=T\wedge(T'\wedge T'')=\frac{(k+k'+k'')!}{k!\,k'!\,k''!}\,\mathrm{alt}_{k+k'+k''}(T\otimes T'\otimes T'')</math>;<br>(4) <math>(\ldots(v_1\cdot v_2)\cdot\ldots\cdot v_{k-1})\cdot v_k=v_1\cdot\ldots\cdot v_k</math> и <math>(\ldots(v_1\wedge v_2)\wedge\ldots\wedge v_{k-1})\wedge v_k=v_1\wedge\ldots\wedge v_k</math>;<br>(5) <math>T\cdot T'=T'\cdot T</math> и <math>T\wedge T'=(-1)^{kk'}T'\wedge T</math>.</i>
+
<li><u>Теорема о симметрическом произведении и внешнем произведении тензоров.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное простр.-во над полем <math>K</math>,<br><math>k,k',k''\!\in\mathbb N_0</math>, <math>v_1,\ldots,v_k,v_1',\ldots,v_{k'}'\!\in V</math> и <math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>, <math>T''\!\in\mathcal T^{k''}\!V</math>; тогда<br>(1) <math>(v_1\otimes\ldots\otimes v_k)\cdot(v_1'\otimes\ldots\otimes v_{k'}')=v_1\cdot\ldots\cdot v_k\cdot v_1'\cdot\ldots\cdot v_{k'}'</math> и <math>(v_1\otimes\ldots\otimes v_k)\wedge(v_1'\otimes\ldots\otimes v_{k'}')=\frac1{k!\,k'!}\,v_1\wedge\ldots\wedge v_k\wedge v_1'\wedge\ldots\wedge v_{k'}'</math>;<br>(2) <math>\mathrm{sym}_k(T)\cdot T'=T\cdot\mathrm{sym}_{k'}(T')=T\cdot T'</math> и <math>\mathrm{alt}_k(T)\wedge T'=T\wedge\mathrm{alt}_{k'}(T')=T\wedge T'</math>;<br>(3) <math>(T\cdot T')\cdot T''=T\cdot(T'\cdot T'')=\mathrm{sym}_{k+k'+k''}(T\otimes T'\otimes T'')</math> и <math>(T\wedge T')\wedge T''=T\wedge(T'\wedge T'')=\frac{(k+k'+k'')!}{k!\,k'!\,k''!}\,\mathrm{alt}_{k+k'+k''}(T\otimes T'\otimes T'')</math><br>(симметрическое произведение ассоциативно и внешнее произведение ассоциативно);<br>(4) <math>T\cdot T'=T'\cdot T</math> и <math>T\wedge T'=(-1)^{kk'}T'\wedge T</math> (симметрическое произведение коммутативно и внешнее произведение суперкоммутативно);<br>(5) <math>(\ldots(v_1\cdot v_2)\cdot\ldots\cdot v_{k-1})\cdot v_k=v_1\cdot\ldots\cdot v_k</math> и <math>(\ldots(v_1\wedge v_2)\wedge\ldots\wedge v_{k-1})\wedge v_k=v_1\wedge\ldots\wedge v_k</math>.</i>
 
<li>Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над <math>V</math>: <math>\mathsf S(V)=\bigoplus_{k=0}^\infty\mathsf S^kV</math> — ассоциативная коммутативная <math>K</math>-алгебра с <math>1</math>.
 
<li>Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над <math>V</math>: <math>\mathsf S(V)=\bigoplus_{k=0}^\infty\mathsf S^kV</math> — ассоциативная коммутативная <math>K</math>-алгебра с <math>1</math>.
 
<li>Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над <math>V</math>: <math>\mathsf\Lambda(V)=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math> — ассоциативная суперкоммутативная <math>K</math>-алгебра с <math>1</math>.
 
<li>Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над <math>V</math>: <math>\mathsf\Lambda(V)=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math> — ассоциативная суперкоммутативная <math>K</math>-алгебра с <math>1</math>.
Строка 60: Строка 58:
 
<ul><li><u>Теорема о внешнем произведении внешних форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>\omega=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}\!=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}</math>;<br>(2) для любых <math>v_1,\ldots,v_{k+k'}\!\in V</math> выполнено <math>(\omega\wedge\omega')(v_1,\ldots,v_{k+k'})=\!\!\!\!\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le k+k',\,1\le j_1'<\ldots<j_{k'}'\le k+k'}\!\!\!\!\!\!\!\!\varepsilon_{j_1,\ldots,j_k,j_1',\ldots,j_{k'}'}\omega(v_{j_1},\ldots,v_{j_k})\,\omega'(v_{j_1'},\ldots,v_{j_{k'}'})</math>.</i>
 
<ul><li><u>Теорема о внешнем произведении внешних форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>\omega=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}\!=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}</math>;<br>(2) для любых <math>v_1,\ldots,v_{k+k'}\!\in V</math> выполнено <math>(\omega\wedge\omega')(v_1,\ldots,v_{k+k'})=\!\!\!\!\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le k+k',\,1\le j_1'<\ldots<j_{k'}'\le k+k'}\!\!\!\!\!\!\!\!\varepsilon_{j_1,\ldots,j_k,j_1',\ldots,j_{k'}'}\omega(v_{j_1},\ldots,v_{j_k})\,\omega'(v_{j_1'},\ldots,v_{j_{k'}'})</math>.</i>
 
<li>Оператор внутреннего произв.-я с вект. <math>v</math>: <math>\biggl(\!\begin{align}i_v\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{k-1}V\\\omega&\mapsto\bigl((v_2,\ldots,v_k)\mapsto\omega(v,v_2,\ldots,v_k)\bigr)\!\end{align}\!\biggr)</math>. Оператор <math>i_v</math> в коорд.: <math>i_v(\omega)_{j_2,\ldots,j_n}\!=\sum_{j_1=1}^nv^{j_1}\omega_{j_1,\ldots,j_n}</math>.
 
<li>Оператор внутреннего произв.-я с вект. <math>v</math>: <math>\biggl(\!\begin{align}i_v\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{k-1}V\\\omega&\mapsto\bigl((v_2,\ldots,v_k)\mapsto\omega(v,v_2,\ldots,v_k)\bigr)\!\end{align}\!\biggr)</math>. Оператор <math>i_v</math> в коорд.: <math>i_v(\omega)_{j_2,\ldots,j_n}\!=\sum_{j_1=1}^nv^{j_1}\omega_{j_1,\ldots,j_n}</math>.
<li>Утверждение: <math>i_v(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=\sum_{t=1}^k(-1)^{t-1}\,v^{j_t}e^{j_1}\!\wedge\ldots\wedge e^{j_{t-1}}\!\wedge e^{j_{t+1}}\!\wedge\ldots\wedge e^{j_k}</math>. Продолжение по лин.-сти опер. <math>i_v</math> до эндоморфизма пр.-ва <math>\mathsf\Lambda(V^*)</math>.
+
<li>Утверждение: <math>i_v(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=\sum_{t=1}^k(-1)^{t+1}\,v^{j_t}e^{j_1}\!\wedge\ldots\wedge e^{j_{t-1}}\!\wedge e^{j_{t+1}}\!\wedge\ldots\wedge e^{j_k}</math>. Продолжение по лин.-сти опер. <math>i_v</math> до эндоморфизма пр.-ва <math>\mathsf\Lambda(V^*)</math>.
 
<li><u>Теорема о внутреннем произведении.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math> и <math>v\in V</math>; тогда <math>i_v</math> — супердифференцирование<br>алгебры <math>\,\mathsf\Lambda(V^*)</math> (то есть для любых <math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math> выполнено <math>i_v(\omega\wedge\omega')=i_v(\omega)\wedge\omega'+(-1)^k\,\omega\wedge i_v(\omega')</math>) и <math>i_v^2=0</math>.</i>
 
<li><u>Теорема о внутреннем произведении.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math> и <math>v\in V</math>; тогда <math>i_v</math> — супердифференцирование<br>алгебры <math>\,\mathsf\Lambda(V^*)</math> (то есть для любых <math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math> выполнено <math>i_v(\omega\wedge\omega')=i_v(\omega)\wedge\omega'+(-1)^k\,\omega\wedge i_v(\omega')</math>) и <math>i_v^2=0</math>.</i>
 
<li>Оператор Ходжа в псевдоевкл. пр.-ве с ориент.: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math> (<math>\mathrm{vol}</math> — канон. форма объема).
 
<li>Оператор Ходжа в псевдоевкл. пр.-ве с ориент.: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math> (<math>\mathrm{vol}</math> — канон. форма объема).
<li>Примеры: <math>*\,1=\mathrm{vol}</math>, <math>*\,\mathrm{vol}=*\,(e^1\wedge\ldots\wedge e^n)=(-1)^q</math> (где <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>), <math>\sharp*(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=\sharp\,\bigl(v_n\!\mapsto\mathrm{vol}(v_1,\ldots,v_n)\bigr)=v_1\times\ldots\times v_{n-1}</math>.
+
<li>Примеры: <math>*\,1=\mathrm{vol}</math>, <math>*\,\mathrm{vol}=(-1)^q</math> (здесь <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>), <math>*\,(\flat\,v_1\wedge\ldots\wedge\flat\,v_n)=\mathrm{vol}(v_1,\ldots,v_n)</math>, <math>\sharp\,{*}\,(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=v_1\times\ldots\times v_{n-1}</math> (<math>n\ge1</math>).
 
<li><u>Лемма об операторе Ходжа в координатах.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math>, <math>e\in\mathrm{OB}(V)</math> и <math>j_{k+1},\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>(*\,\omega)_{j_{k+1},\ldots,j_n}\!=\frac1{k!}\,\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}\omega^{j_1,\ldots,j_k}</math>;<br>(2) для любых <math>e\in\mathrm{OnOB}_{>0}(V)</math> и попарно различных чисел <math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math> выполнено <math>*\,(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=(-1)^t\,e^{j_{k+1}}\!\wedge\ldots\wedge e^{j_n}</math>, где<br><math>\{j_{k+1},\ldots,j_n\}=\{1,\ldots,n\}\!\setminus\!\{j_1,\ldots,j_k\}</math> и <math>j_{k+1}\!<\ldots<j_n</math>, а также <math>(-1)^t=\varepsilon_{j_1,\ldots,j_n}(e_{j_1}\!\!\mid\!e_{j_1})\cdot\ldots\cdot(e_{j_k}\!\!\mid\!e_{j_k})</math>.</i>
 
<li><u>Лемма об операторе Ходжа в координатах.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math>, <math>e\in\mathrm{OB}(V)</math> и <math>j_{k+1},\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>(*\,\omega)_{j_{k+1},\ldots,j_n}\!=\frac1{k!}\,\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\varepsilon_{j_1,\ldots,j_n}\omega^{j_1,\ldots,j_k}</math>;<br>(2) для любых <math>e\in\mathrm{OnOB}_{>0}(V)</math> и попарно различных чисел <math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math> выполнено <math>*\,(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=(-1)^t\,e^{j_{k+1}}\!\wedge\ldots\wedge e^{j_n}</math>, где<br><math>\{j_{k+1},\ldots,j_n\}=\{1,\ldots,n\}\!\setminus\!\{j_1,\ldots,j_k\}</math> и <math>j_{k+1}\!<\ldots<j_n</math>, а также <math>(-1)^t=\varepsilon_{j_1,\ldots,j_n}(e_{j_1}\!\!\mid\!e_{j_1})\cdot\ldots\cdot(e_{j_k}\!\!\mid\!e_{j_k})</math>.</i>
 
<li>Теорема об операторе Ходжа. Утверждение: <i>пусть <math>n\ge1</math> и <math>\sigma=(\,\mid\,)</math>; тогда <math>(v_1\times\ldots\times v_{n-1}\!\mid\!w_1\times\ldots\times w_{n-1})=(-1)^q\det\sigma_{(v_1,\ldots,v_{n-1}),(w_1,\ldots,w_{n-1})}</math></i>.
 
<li>Теорема об операторе Ходжа. Утверждение: <i>пусть <math>n\ge1</math> и <math>\sigma=(\,\mid\,)</math>; тогда <math>(v_1\times\ldots\times v_{n-1}\!\mid\!w_1\times\ldots\times w_{n-1})=(-1)^q\det\sigma_{(v_1,\ldots,v_{n-1}),(w_1,\ldots,w_{n-1})}</math></i>.
<p><u>Теорема об операторе Ходжа.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math> выполнено <math>*\!*\omega=(-1)^{k(n-k)+q}\,\omega</math> (и, значит, <math>\biggl(\!\begin{align}\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\omega&\mapsto*\,\omega\end{align}\!\biggr)</math> — изоморфизм векторных пространств);<br>(2) для любых <math>\psi,\omega\in\mathrm{AMulti}_kV</math> выполнено <math>\psi\wedge*\,\omega=(\psi\!\mid\!\omega)\,\mathrm{vol}</math>, где <math>(\psi\!\mid\!\omega)=\frac1{k!}\,\psi(\sharp^{\otimes k}\omega)</math> (в координатах <math>(\psi\!\mid\!\omega)=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\psi_{j_1,\ldots,j_k}\omega^{j_1,\ldots,j_k}</math>);<br>(3) для любых <math>v,w\in V</math> выполнено <math>*\,(\flat\,v\wedge*\,\flat\,w)=(-1)^q\,(v\!\mid\!w)</math>.</i></p></ul>
+
<p><u>Теорема об операторе Ходжа.</u> <i>Пусть <math>V</math> — псевдоевклидово пространство с ориентацией, <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math> выполнено <math>*\!*\omega=(-1)^{k(n-k)+q}\,\omega</math> (и, значит, <math>\biggl(\!\begin{align}\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\omega&\mapsto*\,\omega\end{align}\!\biggr)</math> — изоморфизм векторных пространств);<br>(2) для любых <math>\psi,\omega\in\mathrm{AMulti}_kV</math> выполнено <math>\psi\wedge*\,\omega=(\psi\!\mid\!\omega)\,\mathrm{vol}</math>, где <math>(\psi\!\mid\!\omega)=\frac1{k!}\,\psi(\sharp^{\wedge k}\omega)</math> (в координатах <math>(\psi\!\mid\!\omega)=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\psi_{j_1,\ldots,j_k}\omega^{j_1,\ldots,j_k}</math>);<br>(3) для любых <math>v,w\in V</math> выполнено <math>*\,(\flat\,v\wedge*\,\flat\,w)=(-1)^q\,(v\!\mid\!w)</math>.</i></p></ul>
  
 
<h3>16&nbsp;&nbsp; Многообразия (часть 2)</h3>
 
<h3>16&nbsp;&nbsp; Многообразия (часть 2)</h3>
Строка 87: Строка 85:
 
<li>Ковариантная произв. вект. полей: <math>\nabla\in\mathrm{Bi}(\mathrm{Vect}(M),\mathrm{Vect}(M))</math> и <math>\forall\,v,w\in\mathrm{Vect}(M),\,f\in\mathrm C^\infty\!(M)\;\bigl(\nabla_{fv}w=f\,\nabla_vw\,\land\,\nabla_v(fw)=(\mathcal L_vf)\,w+f\,\nabla_vw\bigr)</math>.
 
<li>Ковариантная произв. вект. полей: <math>\nabla\in\mathrm{Bi}(\mathrm{Vect}(M),\mathrm{Vect}(M))</math> и <math>\forall\,v,w\in\mathrm{Vect}(M),\,f\in\mathrm C^\infty\!(M)\;\bigl(\nabla_{fv}w=f\,\nabla_vw\,\land\,\nabla_v(fw)=(\mathcal L_vf)\,w+f\,\nabla_vw\bigr)</math>.
 
<li><u>Теорема о ковариантной производной.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math> и в каждой системе координат из атласа на <math>M</math> заданы функции <math>\,\Gamma^i_{j,k}</math>,<br>где <math>i,j,k\in\{1,\ldots,n\}</math>, преобразующиеся при замене координ. по формуле <math>\Gamma^\tilde i_{\tilde j,\tilde k}=\sum_{r=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^r}\!\circ\xi\Bigr)\biggl(\sum_{1\le s,t\le n}\!\!\Bigl(\frac{\partial x^s}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\Bigl(\frac{\partial x^t}{\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\,\Gamma^r_{s,t}+\Bigr(\frac{\partial^2x^r}{\partial x^\tilde j\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\!\biggr)</math>;<br>тогда для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координ. векторное поле <math>\nabla_vw</math> на <math>M</math> по формуле <math>\nabla_vw=\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i+\sum_{k=1}^n\Gamma^i_{j,k}v^jw^k\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>\nabla</math> удовлетворяет определению ковариантной произв.-й.</i>
 
<li><u>Теорема о ковариантной производной.</u> <i>Пусть <math>M</math> — многообразие, <math>n=\dim M</math> и в каждой системе координат из атласа на <math>M</math> заданы функции <math>\,\Gamma^i_{j,k}</math>,<br>где <math>i,j,k\in\{1,\ldots,n\}</math>, преобразующиеся при замене координ. по формуле <math>\Gamma^\tilde i_{\tilde j,\tilde k}=\sum_{r=1}^n\Bigl(\frac{\partial x^\tilde i}{\partial x^r}\!\circ\xi\Bigr)\biggl(\sum_{1\le s,t\le n}\!\!\Bigl(\frac{\partial x^s}{\partial x^\tilde j}\!\circ\tilde\xi\Bigr)\Bigl(\frac{\partial x^t}{\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\,\Gamma^r_{s,t}+\Bigr(\frac{\partial^2x^r}{\partial x^\tilde j\partial x^\tilde k}\!\circ\tilde\xi\Bigr)\!\biggr)</math>;<br>тогда для любых <math>v,w\in\mathrm{Vect}(M)</math>, определяя в координ. векторное поле <math>\nabla_vw</math> на <math>M</math> по формуле <math>\nabla_vw=\!\!\sum_{1\le i,j\le n}\!\!\bigl(v^j\,\partial_jw^i+\sum_{k=1}^n\Gamma^i_{j,k}v^jw^k\bigr)\frac\partial{\partial x^i}</math>, имеем<br>следующие факты: это определение не зависит от выбора системы координат, и операция <math>\nabla</math> удовлетворяет определению ковариантной произв.-й.</i>
<li>Векторное поле вдоль кривой: <math>v\in\mathrm C^\infty\!((\alpha;\beta),\mathrm TM)</math> и <math>\mathrm{pr}_M\!\circ v=\gamma</math>. Скорость <math>v</math> вдоль <math>\gamma</math>: <math>\dot v=\sum_{i=1}^n\Bigl((v^i)\!\dot{\phantom i}\!+\!\!\sum_{1\le j,k\le n}\!\!(\Gamma^i_{j,k}\!\circ\gamma)\,\dot\gamma^j\,v^k\Bigr)\Bigl(\frac\partial{\partial x^i}\!\circ\gamma\Bigr)</math>. Ускорение: <math>\ddot\gamma</math>.</ul>
+
<li>Векторное поле вдоль кривой: <math>v\in\mathrm C^\infty\!((\alpha;\beta),\mathrm TM)</math> и <math>\mathrm{pr}_M\!\circ v=\gamma</math>. Скорость <math>v</math> вдоль <math>\gamma</math>: <math>\dot v=\sum_{i=1}^n\Bigl((v^i)\!\dot{\phantom i}\!+\!\!\sum_{1\le j,k\le n}\!\!(\Gamma^i_{j,k}\!\circ\gamma)\,\dot\gamma^jv^k\Bigr)\Bigl(\frac\partial{\partial x^i}\!\circ\gamma\Bigr)</math>. Ускорение: <math>\ddot\gamma</math>.</ul>
  
 
<h5>16.3&nbsp; Римановы и псевдоримановы многообразия (основные определения и примеры)</h5>
 
<h5>16.3&nbsp; Римановы и псевдоримановы многообразия (основные определения и примеры)</h5>
Строка 94: Строка 92:
 
<li>Бемоль: <math>(\flat\,v)(m)=\flat_{g(m)}(v(m))</math>. Диез: <math>(\sharp\,\lambda)(m)=\sharp^{g(m)}(\lambda(m))</math>. Градиент функции: <math>\mathrm{grad}\,f=\sharp\,\mathrm df</math>. Градиент в коорд.: <math>(\mathrm{grad}\,f)^i=\sum_{j=1}^ng^{i,j}\,\partial_jf=\partial^if</math>.
 
<li>Бемоль: <math>(\flat\,v)(m)=\flat_{g(m)}(v(m))</math>. Диез: <math>(\sharp\,\lambda)(m)=\sharp^{g(m)}(\lambda(m))</math>. Градиент функции: <math>\mathrm{grad}\,f=\sharp\,\mathrm df</math>. Градиент в коорд.: <math>(\mathrm{grad}\,f)^i=\sum_{j=1}^ng^{i,j}\,\partial_jf=\partial^if</math>.
 
<li>Ориентация многообр. <math>M</math> — такой выбор ориентаций всех пр.-в <math>\mathrm T_mM</math>, где <math>m\in M</math>, что <math>\exists\,\omega\in\Omega^n(M)\;\forall\,m\in M\;\bigl(\omega(m)\in\mathrm{VF}_{>0}(\mathrm T_mM)\bigr)</math>. Атлас <math>\mathcal A_{>0}</math>.
 
<li>Ориентация многообр. <math>M</math> — такой выбор ориентаций всех пр.-в <math>\mathrm T_mM</math>, где <math>m\in M</math>, что <math>\exists\,\omega\in\Omega^n(M)\;\forall\,m\in M\;\bigl(\omega(m)\in\mathrm{VF}_{>0}(\mathrm T_mM)\bigr)</math>. Атлас <math>\mathcal A_{>0}</math>.
<li>Канонич. форма объема. Оператор Ходжа: <math>(*\,\omega)(m)=*\,(\omega(m))</math>. Ротор: <math>\mathrm{rot}\,v=\sharp\,{*}\,\mathrm d\,\flat\,v</math>. Дивергенция: <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,\flat\,v</math>. Лапласиан: <math>\Delta f=\mathrm{div}(\mathrm{grad}\,f)</math>.
+
<li>Канонич. форма объема: <math>\mathrm{vol}</math>. Оператор Ходжа: <math>*</math>. Ротор (<math>n=3</math>): <math>\mathrm{rot}\,v=\sharp\,{*}\,\mathrm d\,\flat\,v</math>. Дивергенция: <math>\mathrm{div}\,v=(-1)^q\,{*}\,\mathrm d\,{*}\,\flat\,v</math>. Лапласиан: <math>\Delta f=\mathrm{div}(\mathrm{grad}\,f)</math>.
<li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты. Длина: <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma,\dot\gamma)}</math>; незав.-сть от параметриз.-и.
+
<li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты. Объем многообразия <math>M</math>: <math>\int_M\!\!\mathrm{vol}</math>. Длина кривой.
<p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>операцию ковариантной производной <math>\nabla</math> на <math>M</math> (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:<br><math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math>;<br>(2) операция ковариантной производной <math>\nabla</math> на <math>M</math>, обладающая свойствами из пункта (1), определена однозначно (без доказательства).</i></p>
+
<p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>операцию ковариантной производной <math>\nabla</math> на <math>M</math> (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:<br><math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math> (эскиз доказательства);<br>(2) операция ковариантной производной <math>\nabla</math> на <math>M</math>, обладающая свойствами из пункта (1), определена однозначно (без доказательства).</i></p>
 
<li>Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): <math>\ddot\gamma=0</math> (если <math>g(\dot\gamma,\dot\gamma)=1</math>).
 
<li>Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): <math>\ddot\gamma=0</math> (если <math>g(\dot\gamma,\dot\gamma)=1</math>).
<li>Тензор Римана (кривизны): <math>\mathrm R^i_{j,k,l}=\partial_k\Gamma^i_{l,j}-\partial_l\Gamma^i_{k,j}+\sum_{t=1}^n\bigl(\Gamma^i_{k,t}\Gamma^t_{l,j}-\Gamma^i_{l,t}\Gamma^t_{k,j}\bigr)</math>. Тензор Риччи: <math>\mathrm R_{i,j}=\sum_{t=1}^n\mathrm R^t_{i,t,j}</math>. Скалярная кривизна: <math>\mathrm R=\!\!\sum_{1\le i,j\le n}\!\!g^{i,j}\,\mathrm R_{i,j}</math>.</ul>
+
<li>Тензор Римана (кривизны): <math>\mathrm R^i_{j,k,l}=\partial_k\Gamma^i_{l,j}-\partial_l\Gamma^i_{k,j}+\sum_{h=1}^n\bigl(\Gamma^i_{k,h}\Gamma^h_{l,j}-\Gamma^i_{l,h}\Gamma^h_{k,j}\bigr)</math>. Тензор Риччи: <math>\mathrm R_{i,j}=\sum_{h=1}^n\mathrm R^h_{i,h,j}</math>. Скалярная кривизна: <math>\mathrm R=\!\!\sum_{1\le i,j\le n}\!\!g^{i,j}\,\mathrm R_{i,j}</math>.</ul>
  
<h5>Приложение: дифференциальные операции в <math>\mathbb R^3</math></h5>
+
<h5>Эпилог. Дифференциальные операции на многообразии <math>\mathbb R^3</math></h5>
<ul><li>Рассмотрим топологическое пространство <math>\mathbb R^3</math> как трехмерное риманово многообразие с ориентацией, структура которого задана максимальным атласом,<br>являющимся классом согласов.-сти системы координат <math>\mathrm{id}_{\mathbb R^3}</math> (эти коорд.-ты обозначаются <math>(x,y,z)</math>), метрическим тензором («квадратом элемента длины»)<br><math>g=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2</math> и таким выбором ориентаций всех касательных пр.-в к <math>\mathbb R^3</math>, что <math>\forall\,m\in\mathbb R^3\,\bigl(\Bigl(\frac\partial{\partial x}(m),\frac\partial{\partial y}(m),\frac\partial{\partial z}(m)\Bigr)\!\in\mathrm{OB}_{>0}(\mathrm T_m\mathbb R^3)\bigr)</math>;<br>данная структура на <math>\mathbb R^3</math> определяет каноническую форму объема («элемент объема») <math>\mathrm{vol}=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz</math> и нулевые символы Кристоффеля.
+
<ul><li>Рассмотрим топологическое пространство <math>\mathbb R^3</math> как трехмерное риманово многообразие с ориентацией, структура которого задана максимальным атласом,<br>являющимся классом согласов.-сти системы координат <math>\mathrm{id}_{\mathbb R^3}</math> (эти коорд.-ты обозначаются <math>(x,y,z)</math>), метрическим тензором («квадратом элемента длины»)<br><math>g=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2</math> и таким выбором ориентаций всех касательных пр.-в к <math>\mathbb R^3</math>, что <math>\forall\,m\in\mathbb R^3\,\bigl(\Bigl(\frac\partial{\partial x}(m),\frac\partial{\partial y}(m),\frac\partial{\partial z}(m)\Bigr)\!\in\mathrm{OB}_{>0}(\mathrm T_m\mathbb R^3)\bigr)</math>;<br>данная структура на <math>\mathbb R^3</math> определяет каноническую форму объема («элемент объема») <math>\mathrm{vol}=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz</math> и символы Кристоффеля, равные <math>0</math>.
<li>Пусть <math>(x^1,x^2,x^3)</math> — ортогональная положительно ориентированная система координат на <math>\mathbb R^3</math> с областью определения <math>U</math> (то есть для любых <math>m\in U</math><br>выполнено <math>\Bigl(\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr)\!\in\mathrm{OOB}_{>0}(\mathrm T_m\mathbb R^3)</math>); обозначим через <math>H_1</math>, <math>H_2</math> и <math>H_3</math> коэффициенты Ламе <math>\sqrt{\Bigl(\frac{\partial x}{\partial x^1}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^1}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^1}\Bigr)^{\!2}}</math>,<br><math>\sqrt{\Bigl(\frac{\partial x}{\partial x^2}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^2}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^2}\Bigr)^{\!2}}</math> и <math>\sqrt{\Bigl(\frac{\partial x}{\partial x^3}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^3}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^3}\Bigr)^{\!2}}</math> соответственно; тогда<br>(1) для любых <math>i,j\in\{1,2,3\}</math> выполнено <math>g_{i,j}=g\Bigl(\frac\partial{\partial x^i},\frac\partial{\partial x^j}\Bigr)=g\Bigl(\frac{\partial x}{\partial x^i}\frac\partial{\partial x}+\frac{\partial y}{\partial x^i}\frac\partial{\partial y}+\frac{\partial z}{\partial x^i}\frac\partial{\partial z},\frac{\partial x}{\partial x^j}\frac\partial{\partial x}+\frac{\partial y}{\partial x^j}\frac\partial{\partial y}+\frac{\partial z}{\partial x^j}\frac\partial{\partial z}\Bigr)=\delta_{i,j}\,H_i^2</math>, и,<br>значит, <math>g=H_1^2(\mathrm dx^1)^2+H_2^2(\mathrm dx^2)^2+H_3^2(\mathrm dx^3)^2</math> и <math>\mathrm{vol}=H_1H_2H_3\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>;<br>(2) для любых <math>i,j,k\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^3g^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)=\frac1{2H_i^2}\bigl(\delta_{i,k}\,\partial_j(H_i^2)+\delta_{i,j}\,\partial_k(H_i^2)-\delta_{j,k}\,\partial_i(H_j^2)\bigr)</math>, и, значит,<br>для любых <math>i,j\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{i,j}=\Gamma^i_{j,i}=\frac1{2H_i^2}\bigl(\delta_{i,j}\,\partial_i(H_i^2)+\partial_j(H_i^2)-\delta_{i,j}\,\partial_i(H_i^2)\bigr)=\frac{\partial_jH_i}{H_i}</math>, для любых различных <math>i,j\in\{1,2,3\}</math><br>выполнено <math>\Gamma^i_{j,j}=\frac1{2H_i^2}\bigl(\delta_{i,j}\,\partial_j(H_i^2)+\delta_{i,j}\,\partial_j(H_i^2)-\partial_i(H_j^2)\bigr)=-\frac{H_i\,\partial_iH_j}{H_i^2}</math>, и для любых попарно различных <math>i,j,k\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{j,k}=0</math>.
+
<li>Пусть <math>(x^1,x^2,x^3)</math> — ортогональная положительно ориентированная система координат на <math>\mathbb R^3</math> с областью определения <math>U</math> (то есть для любых <math>m\in U</math><br>выполнено <math>\Bigl(\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr)\!\in\mathrm{OOB}_{>0}(\mathrm T_m\mathbb R^3)</math>); обозначим через <math>H_1</math>, <math>H_2</math> и <math>H_3</math> коэффициенты Ламе <math>\sqrt{\Bigl(\frac{\partial x}{\partial x^1}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^1}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^1}\Bigr)^{\!2}}</math>,<br><math>\sqrt{\Bigl(\frac{\partial x}{\partial x^2}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^2}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^2}\Bigr)^{\!2}}</math> и <math>\sqrt{\Bigl(\frac{\partial x}{\partial x^3}\Bigr)^{\!2}\!+\Bigl(\frac{\partial y}{\partial x^3}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial x^3}\Bigr)^{\!2}}</math> соответственно; тогда<br>(1) для любых <math>i,j\in\{1,2,3\}</math> выполнено <math>g_{i,j}=g\Bigl(\frac\partial{\partial x^i},\frac\partial{\partial x^j}\Bigr)=g\Bigl(\frac{\partial x}{\partial x^i}\frac\partial{\partial x}+\frac{\partial y}{\partial x^i}\frac\partial{\partial y}+\frac{\partial z}{\partial x^i}\frac\partial{\partial z},\frac{\partial x}{\partial x^j}\frac\partial{\partial x}+\frac{\partial y}{\partial x^j}\frac\partial{\partial y}+\frac{\partial z}{\partial x^j}\frac\partial{\partial z}\Bigr)=\delta_{i,j}\,H_i^2</math>, и,<br>значит, <math>g=H_1^2(\mathrm dx^1)^2+H_2^2(\mathrm dx^2)^2+H_3^2(\mathrm dx^3)^2</math> и <math>\mathrm{vol}=H_1H_2H_3\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>;<br>(2) для любых <math>i,j,k\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^3g^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)=\frac1{2H_i^2}\bigl(\delta_{i,k}\,\partial_j(H_i^2)+\delta_{i,j}\,\partial_k(H_i^2)-\delta_{j,k}\,\partial_i(H_j^2)\bigr)</math>, и, значит,<br>для любых <math>i,j\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{i,j}=\Gamma^i_{j,i}=\frac1{2H_i^2}\bigl(\delta_{i,j}\,\partial_i(H_i^2)+\partial_j(H_i^2)-\delta_{i,j}\,\partial_i(H_i^2)\bigr)=\frac{\partial_jH_i}{H_i}</math>, для любых различных <math>i,j\in\{1,2,3\}</math><br>выполнено <math>\Gamma^i_{j,j}=\frac1{2H_i^2}\bigl(\delta_{i,j}\,\partial_j(H_i^2)+\delta_{i,j}\,\partial_j(H_i^2)-\partial_i(H_j^2)\bigr)=-\frac{H_j\,\partial_iH_j}{H_i^2}</math>, и для любых попарно различных <math>i,j,k\in\{1,2,3\}</math> выполнено <math>\Gamma^i_{j,k}=0</math>.
 
<li>Зафиксируем ортогон. положит. ориентир. систему координат <math>(x^1,x^2,x^3)</math> на <math>\mathbb R^3</math> с областью определения <math>U</math> и обозначим через <math>e_1</math>, <math>e_2</math> и <math>e_3</math> векторные поля<br><math>\frac1{H_1}\frac{\partial}{\partial x^1}</math>, <math>\frac1{H_2}\frac{\partial}{\partial x^2}</math> и <math>\frac1{H_3}\frac{\partial}{\partial x^3}</math> соответственно; тогда <math>e^1\!=H_1\,\mathrm dx^1</math>, <math>e^2\!=H_2\,\mathrm dx^2</math> и <math>e^3\!=H_3\,\mathrm dx^3</math>, а также <math>g=(e^1)^2+(e^2)^2+(e^3)^2</math> и <math>\mathrm{vol}=e^1\!\wedge e^2\!\wedge e^3</math>.
 
<li>Зафиксируем ортогон. положит. ориентир. систему координат <math>(x^1,x^2,x^3)</math> на <math>\mathbb R^3</math> с областью определения <math>U</math> и обозначим через <math>e_1</math>, <math>e_2</math> и <math>e_3</math> векторные поля<br><math>\frac1{H_1}\frac{\partial}{\partial x^1}</math>, <math>\frac1{H_2}\frac{\partial}{\partial x^2}</math> и <math>\frac1{H_3}\frac{\partial}{\partial x^3}</math> соответственно; тогда <math>e^1\!=H_1\,\mathrm dx^1</math>, <math>e^2\!=H_2\,\mathrm dx^2</math> и <math>e^3\!=H_3\,\mathrm dx^3</math>, а также <math>g=(e^1)^2+(e^2)^2+(e^3)^2</math> и <math>\mathrm{vol}=e^1\!\wedge e^2\!\wedge e^3</math>.
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3=\frac{v^1}{H_1}\frac{\partial}{\partial x^1}+\frac{v^2}{H_2}\frac{\partial}{\partial x^2}+\frac{v^3}{H_3}\frac{\partial}{\partial x^3}\in\mathrm{Vect}(U)</math>; тогда <math>\flat\,v=v^1e^1+v^2e^2+v^3e^3=H_1v^1\,\mathrm dx^1+H_2v^2\,\mathrm dx^2+H_3v^3\,\mathrm dx^3</math><br>и <math>*\,\flat\,v=v^1e^2\!\wedge e^3-v^2e^1\!\wedge e^3+v^3e^1\!\wedge e^2\!=H_2H_3v^1\,\mathrm dx^2\!\wedge\mathrm dx^3-H_1H_3v^2\,\mathrm dx^1\!\wedge\mathrm dx^3+H_1H_2v^3\,\mathrm dx^1\!\wedge\mathrm dx^2</math>.
 
 
<li>Пусть <math>f\in\mathrm C^\infty\!(U)</math>; тогда <math>\mathrm{grad}\,f=\sharp\,\mathrm df=\sharp\,\bigl(\partial_1f\;\mathrm dx^1+\partial_2f\;\mathrm dx^2+\partial_3f\;\mathrm dx^3\bigr)=\frac{\partial_1f}{H_1}\,e_1+\frac{\partial_2f}{H_2}\,e_2+\frac{\partial_3f}{H_3}\,e_3</math>.
 
<li>Пусть <math>f\in\mathrm C^\infty\!(U)</math>; тогда <math>\mathrm{grad}\,f=\sharp\,\mathrm df=\sharp\,\bigl(\partial_1f\;\mathrm dx^1+\partial_2f\;\mathrm dx^2+\partial_3f\;\mathrm dx^3\bigr)=\frac{\partial_1f}{H_1}\,e_1+\frac{\partial_2f}{H_2}\,e_2+\frac{\partial_3f}{H_3}\,e_3</math>.
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(U)</math>; тогда <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,\flat\,v=*\,\mathrm d\bigl(H_2H_3v^1\,\mathrm dx^2\!\wedge\mathrm dx^3-H_1H_3v^2\,\mathrm dx^1\!\wedge\mathrm dx^3+H_1H_2v^3\,\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=*\,\bigl(\bigl(\partial_1(H_2H_3v^1)+\partial_2(H_1H_3v^2)+\partial_3(H_1H_2v^3)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3\bigr)=\frac1{H_1H_2H_3}\bigl(\partial_1(H_2H_3v^1)+\partial_2(H_1H_3v^2)+\partial_3(H_1H_2v^3)\bigr)</math>.</ul>
+
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3=\frac{v^1}{H_1}\frac{\partial}{\partial x^1}+\frac{v^2}{H_2}\frac{\partial}{\partial x^2}+\frac{v^3}{H_3}\frac{\partial}{\partial x^3}\in\mathrm{Vect}(U)</math>; тогда<br>(1) <math>\flat\,v=v^1e^1+v^2e^2+v^3e^3=H_1v^1\,\mathrm dx^1+H_2v^2\,\mathrm dx^2+H_3v^3\,\mathrm dx^3</math>;<br>(2) <math>*\,\flat\,v=v^1e^2\!\wedge e^3-v^2e^1\!\wedge e^3+v^3e^1\!\wedge e^2\!=H_2H_3v^1\,\mathrm dx^2\!\wedge\mathrm dx^3-H_1H_3v^2\,\mathrm dx^1\!\wedge\mathrm dx^3+H_1H_2v^3\,\mathrm dx^1\!\wedge\mathrm dx^2</math>;<br>(3) <math>\mathrm{rot}\,v=\sharp\,{*}\,\mathrm d\,\flat\,v=\sharp\,{*}\,\mathrm d\bigl(H_1v^1\,\mathrm dx^1+H_2v^2\,\mathrm dx^2+H_3v^3\,\mathrm dx^3\bigr)=</math><br><math>=\sharp\,{*}\,\bigl(\bigl(\partial_2(H_3v^3)-\partial_3(H_2v^2)\bigr)\,\mathrm dx^2\!\wedge\mathrm dx^3+\bigl(\partial_1(H_3v^3)-\partial_3(H_1v^1)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^3+\bigl(\partial_1(H_2v^2)-\partial_2(H_1v^1)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=\frac{\partial_2(H_3v^3)-\partial_3(H_2v^2)}{H_2H_3}\,e_1-\frac{\partial_1(H_3v^3)-\partial_3(H_1v^1)}{H_1H_3}\,e_2+\frac{\partial_1(H_2v^2)-\partial_2(H_1v^1)}{H_1H_2}\,e_3</math>;<br>(4) <math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,\flat\,v=*\,\mathrm d\bigl(H_2H_3v^1\,\mathrm dx^2\!\wedge\mathrm dx^3-H_1H_3v^2\,\mathrm dx^1\!\wedge\mathrm dx^3+H_1H_2v^3\,\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=*\,\bigl(\bigl(\partial_1(H_2H_3v^1)+\partial_2(H_1H_3v^2)+\partial_3(H_1H_2v^3)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3\bigr)=\frac1{H_1H_2H_3}\bigl(\partial_1(H_2H_3v^1)+\partial_2(H_1H_3v^2)+\partial_3(H_1H_2v^3)\bigr)</math>.
 +
<li>Пусть <math>f\in\mathrm C^\infty\!(U)</math>; тогда <math>\Delta f=\mathrm{div}(\mathrm{grad}\,f)=\mathrm{div}\bigl(\frac{\partial_1f}{H_1}\,e_1+\frac{\partial_2f}{H_2}\,e_2+\frac{\partial_3f}{H_3}\,e_3\!\bigr)=\frac1{H_1H_2H_3}\Bigl(\partial_1\bigl(\frac{H_2H_3}{H_1}\,\partial_1f\bigr)+\partial_2\bigl(\frac{H_1H_3}{H_2}\,\partial_2f\bigr)+\partial_3\bigl(\frac{H_1H_2}{H_3}\,\partial_3f\bigr)\!\Bigr)</math>.
 +
<li>Пусть <math>-\infty\le\alpha<\beta\le\infty</math> и <math>\gamma\in\mathrm C^\infty\!((\alpha;\beta),U)</math>; тогда<br>(1) <math>\dot\gamma=(\gamma^1)\!\dot{\phantom i}\frac{\partial}{\partial x^1}+(\gamma^2)\!\dot{\phantom i}\frac{\partial}{\partial x^2}+(\gamma^3)\!\dot{\phantom i}\frac{\partial}{\partial x^3}=H_1(\gamma^1)\!\dot{\phantom i}e_1+H_2(\gamma^2)\!\dot{\phantom i}e_2+H_3(\gamma^3)\!\dot{\phantom i}e_3</math>;<br>(2) <math>\ddot\gamma=\sum_{i=1}^3\Bigl((\gamma^i)\!\ddot{\phantom i}+\!\!\sum_{1\le j,k\le3}\!\!\Gamma^i_{j,k}(\gamma^j)\!\dot{\phantom i}(\gamma^k)\!\dot{\phantom i}\Bigr)\frac\partial{\partial x^i}=\sum_{i=1}^3\Bigl((\gamma^i)\!\ddot{\phantom i}+\sum_{j=1}^3\Gamma^i_{i,j}(\gamma^i)\!\dot{\phantom i}(\gamma^j)\!\dot{\phantom i}\!+\sum_{j=1}^3\Gamma^i_{j,i}(\gamma^j)\!\dot{\phantom i}(\gamma^i)\!\dot{\phantom i}\!-\Gamma^i_{i,i}\bigl((\gamma^i)\!\dot{\phantom i}\bigr)^2+\!\!\!\sum_{1\le j\le3,\,j\ne i}\!\!\!\Gamma^i_{j,j}\bigl((\gamma^j)\!\dot{\phantom i}\bigr)^2\Bigr)\frac\partial{\partial x^i}=</math><br><math>=\sum_{i=1}^3\Bigl((\gamma^i)\!\ddot{\phantom i}+2\sum_{j=1}^3\frac{\partial_jH_i}{H_i}(\gamma^i)\!\dot{\phantom i}(\gamma^j)\!\dot{\phantom i}\!-\frac{\partial_iH_i}{H_i}\bigl((\gamma^i)\!\dot{\phantom i}\bigr)^2-\!\!\!\sum_{1\le j\le3,\,j\ne i}\!\!\!\frac{H_j\,\partial_iH_j}{H_i^2}\bigl((\gamma^j)\!\dot{\phantom i}\bigr)^2\Bigr)\frac\partial{\partial x^i}=\sum_{i=1}^3\Bigl((\gamma^i)\!\ddot{\phantom i}+\frac{2(H_i)\!\dot{\phantom i}\!}{H_i}(\gamma^i)\!\dot{\phantom i}\!-\sum_{j=1}^3\frac{H_j\,\partial_iH_j}{H_i^2}\bigl((\gamma^j)\!\dot{\phantom i}\bigr)^2\Bigr)\frac\partial{\partial x^i}=</math><br><math>=\sum_{i=1}^3\frac1{H_i^2}\Bigl(H_i^2(\gamma^i)\!\ddot{\phantom i}+2H_i(H_i)\!\dot{\phantom i}(\gamma^i)\!\dot{\phantom i}\!-\sum_{j=1}^3H_j\,\partial_iH_j\bigl((\gamma^j)\!\dot{\phantom i}\bigr)^2\Bigr)\frac\partial{\partial x^i}=\sum_{i=1}^3\frac1{H_i}\Bigl(\bigl(H_i^2(\gamma^i)\!\dot{\phantom i}\bigr)\!\dot{\phantom i}\!-\sum_{j=1}^3H_j\,\partial_iH_j\bigl((\gamma^j)\!\dot{\phantom i}\bigr)^2\Bigr)\,e_i</math>.
 +
<li>Найдем коэфф.-ты Ламе для цилиндрической и сферической систем координат (это ортогональные положительно ориентированные системы координат).<br>(1) Цилиндрическая система координат <math>(\rho,\varphi,z)</math>: <math>x=\rho\cos\varphi</math>, <math>y=\rho\sin\varphi</math> и <math>z=z</math>, и, значит, <math>H_\rho=1</math>, <math>H_\varphi=\rho</math> и <math>H_z=1</math>.<br>(2) Сферическая система координат <math>(r,\theta,\varphi)</math>: <math>x=r\sin\theta\cos\varphi</math>, <math>y=r\sin\theta\sin\varphi</math> и <math>z=r\cos\theta</math>, и, значит, <math>H_r=1</math>, <math>H_\theta=r</math> и <math>H_\varphi=r\sin\theta</math>.</ul>

Текущая версия на 12:00, 7 января 2019

Подробный план второй половины третьего семестра курса алгебры

14   Тензорные произведения векторных пространств

14.1  Определения и конструкции, связанные с тензорами
  • Тензорное произведение вект. пространств: , где и — подпространство полилинеаризации.
  • Разложимый тензор: . Ранг тензора : — минимум среди всех таких , что равен сумме разл. тензоров.
  • Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
    и отображение — полилинейный оператор.
  • Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
    существ. единств. такой , что
    (и, значит, отображение — изоморфизм векторных пространств).
  • Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
    пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
    пространства , а также, если , то .
  • Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
  • Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
    и .
  • Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    (1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
    (2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2  Тензоры типа и тензорная алгебра
  • Пространство тензоров типа над : . Примеры: , , , , .
  • Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
  • Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) — изоморфизм векторных пространств;
    (2) — изоморфизм векторных пространств;
    (3) — изоморфизм вект. простр.-в.
  • Тензор типа в координатах: . Примеры: , , .
  • Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
  • Преобразование при замене базиса: . Примеры: , .
  • Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
  • Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
    — базис алгебры , и для любых его элементов и выполнено
    , а также — алгебра многочленов от своб. перем.-х.
14.3  Операции над тензорами типа
  • Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
  • Тензорное произв.-е полилин. форм как полилин. форма (, ): .
  • Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
  • Свертка по -й и -й позициям: .
  • Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.

    Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых , и выполнено , , и ;
    (2) для любых и выполнено и .

  • Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
    (1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
    (2) под действием канонического изоморфизма тензор переходит в форму ;
    (3) для любых выполнено .
  • Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
  • Опускание индекса и подъем индекса в коорд.-х: и .

15   Симметрические и внешние степени векторных пространств

15.1  Определения и конструкции, связанные с симметричными и антисимметричными тензорами
  • Симметрическая степень: . Внешняя степень: .
  • Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
    и ; обозначим через канонический изоморфизм ; тогда
    (1) (напоминание: и );
    (2) и (далее пространства и отождествляются при помощи изоморфизма );
    (3) и (далее пространства и отождествляются при помощи изоморфизма ).
  • Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.

    Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) и , а также и (и, значит, — проектор на и — проектор на ).

  • Симметрич. и внешнее произв.-я векторов: и . Пример: .
  • Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
    (1) и отображение — симметричный полилинейный оператор;
    (2) и отображение — антисимметричный полилинейный оператор.
  • Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
    (1) для любых существует единственный такой , что ;
    (2) для любых существует единственный такой , что .
  • Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
    и ; тогда
    (1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (3) и .
  • Симметрич. и внешняя степени лин. оператора (): и .
15.2  Симметрическая алгебра и внешняя алгебра
  • Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
  • Симметриз.-я и альтерн.-е в коорд.: и .
  • Симметрическое и внешнее произв. в коорд.: и .
  • Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
    , и , , ; тогда
    (1) и ;
    (2) и ;
    (3) и
    (симметрическое произведение ассоциативно и внешнее произведение ассоциативно);
    (4) и (симметрическое произведение коммутативно и внешнее произведение суперкоммутативно);
    (5) и .
  • Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
  • Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
  • Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
    (1) — базис алгебры , и для любых его элементов и
    выполнено , где числа суть числа , упорядоченные по неубыванию;
    (2) — базис алгебры , и для любых его элементов и
    выполнено , где суть , упоряд. по неубыванию;
    (3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3  Операции над внешними формами
  • Теорема о внешнем произведении внешних форм. Пусть — поле, , — векторное пространство над полем , ,
    , и ; тогда
    (1) для любых выполнено ;
    (2) для любых выполнено .
  • Оператор внутреннего произв.-я с вект. : . Оператор в коорд.: .
  • Утверждение: . Продолжение по лин.-сти опер. до эндоморфизма пр.-ва .
  • Теорема о внутреннем произведении. Пусть — поле, , — вект. пр. над , и ; тогда — супердифференцирование
    алгебры (то есть для любых , и выполнено ) и .
  • Оператор Ходжа в псевдоевкл. пр.-ве с ориент.: ( — канон. форма объема).
  • Примеры: , (здесь ), , ().
  • Лемма об операторе Ходжа в координатах. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
    (1) для любых , и выполнено ;
    (2) для любых и попарно различных чисел выполнено , где
    и , а также .
  • Теорема об операторе Ходжа. Утверждение: пусть и ; тогда .

    Теорема об операторе Ходжа. Пусть — псевдоевклидово пространство с ориентацией, , и ; тогда
    (1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
    (2) для любых выполнено , где (в координатах );
    (3) для любых выполнено .

16   Многообразия (часть 2)

16.1  Векторные поля, ковекторные поля, тензорные поля
  • Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
  • Пр.-ва векторн. полей и ковект. полей (-форм): и .
  • Умножение вект. полей и -форм на функции. Действие -форм на вект. поля. Локальные вект. поля и -формы . Утверждение: .
  • Векторные поля и -формы в коорд.: и . Преобраз.-я при замене коорд.: и .
  • Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
  • В коорд.: . Пример: — поле форм от перем.-х.
  • Преобр.-е координат тензорного поля при замене координат на : .
  • Пр.-во дифференциальн. -форм: . Алгебра диффер. форм: .
16.2  Дифференциальные операции на многообразиях
  • Производная Ли: . Утверждение: и . Коммутатор вект. полей: .
  • Теорема о коммутаторе. Пусть — многообразие и ; тогда
    (1) для любых , определяя в координатах векторное поле на по формуле , имеем
    следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению коммутатора;
    (2) операция коммутатора на определена однозначно;
    (3) — алгебра Ли относ.-но операции , и отобр.-е — изоморфизм алгебр Ли (без док.-ва сюръективности).
  • Внешний дифференциал: — супердифференцирование алгебры , и . Утверждение: .
  • Теорема о внешнем дифференциале. Пусть — многообразие и ; тогда
    (1) для любых и , определяя в координатах форму на по формуле
    (эта формула эквивалентна формуле ), имеем следующие факты: это определение не зависит от
    выбора системы координат (эскиз доказательства), и операция удовлетворяет определению внешнего дифференциала;
    (2) операция внешнего дифференциала на определена однозначно.
  • Замкнутая форма: . Точная форма: . Утверждение: точные формы замкнуты. Лемма Пуанкаре: в замкнут. формы точны (без док.-ва).
  • Ковариантная произв. вект. полей: и .
  • Теорема о ковариантной производной. Пусть — многообразие, и в каждой системе координат из атласа на заданы функции ,
    где , преобразующиеся при замене координ. по формуле ;
    тогда для любых , определяя в координ. векторное поле на по формуле , имеем
    следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению ковариантной произв.-й.
  • Векторное поле вдоль кривой: и . Скорость вдоль : . Ускорение: .
16.3  Римановы и псевдоримановы многообразия (основные определения и примеры)
  • Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
  • Псевдориманово многообр. сигнат. — многообр. с метр. тензором сигнат. . Риманово многообр.: . Примеры: , пр.-во Лобачевского .
  • Бемоль: . Диез: . Градиент функции: . Градиент в коорд.: .
  • Ориентация многообр. — такой выбор ориентаций всех пр.-в , где , что . Атлас .
  • Канонич. форма объема: . Оператор Ходжа: . Ротор (): . Дивергенция: . Лапласиан: .
  • Символы Кристоффеля: . Теорема о связности Леви-Чивиты. Объем многообразия : . Длина кривой.

    Теорема о связности Леви-Чивиты. Пусть — псевдориманово многообразие; тогда
    (1) символы Кристоффеля на преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют
    операцию ковариантной производной на (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:
    и (эскиз доказательства);
    (2) операция ковариантной производной на , обладающая свойствами из пункта (1), определена однозначно (без доказательства).

  • Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): (если ).
  • Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .
Эпилог. Дифференциальные операции на многообразии
  • Рассмотрим топологическое пространство как трехмерное риманово многообразие с ориентацией, структура которого задана максимальным атласом,
    являющимся классом согласов.-сти системы координат (эти коорд.-ты обозначаются ), метрическим тензором («квадратом элемента длины»)
    и таким выбором ориентаций всех касательных пр.-в к , что ;
    данная структура на определяет каноническую форму объема («элемент объема») и символы Кристоффеля, равные .
  • Пусть — ортогональная положительно ориентированная система координат на с областью определения (то есть для любых
    выполнено ); обозначим через , и коэффициенты Ламе ,
    и соответственно; тогда
    (1) для любых выполнено , и,
    значит, и ;
    (2) для любых выполнено , и, значит,
    для любых выполнено , для любых различных
    выполнено , и для любых попарно различных выполнено .
  • Зафиксируем ортогон. положит. ориентир. систему координат на с областью определения и обозначим через , и векторные поля
    , и соответственно; тогда , и , а также и .
  • Пусть ; тогда .
  • Пусть ; тогда
    (1) ;
    (2) ;
    (3)

    ;
    (4)
    .
  • Пусть ; тогда .
  • Пусть и ; тогда
    (1) ;
    (2)

    .
  • Найдем коэфф.-ты Ламе для цилиндрической и сферической систем координат (это ортогональные положительно ориентированные системы координат).
    (1) Цилиндрическая система координат : , и , и, значит, , и .
    (2) Сферическая система координат : , и , и, значит, , и .