Алгебра phys 1 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
<li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | <li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | ||
<li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. | <li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. | ||
− | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если в кольце <math>R</math> все идеалы главные, то <math>\,\mathrm{Irr}(R)\subseteq\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие | + | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если в кольце <math>R</math> все идеалы главные, то <math>\,\mathrm{Irr}(R)\subseteq\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие условия эквивалентны: (у1) <math>r\in\mathrm{Prime}(R)</math> и (у2) <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область целостности, в которой все идеалы главные, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие условия эквивалентны:<br>(у1) <math>r\in\mathrm{Irr}(R)</math>, (у2) <math>r\in\mathrm{Prime}(R)</math>, (у3) <math>R/(r)</math> — область целостности и (у4) <math>R/(r)</math> — поле.</i></ul> |
<h5>1.4.2 Евклидовы кольца и факториальные кольца</h5> | <h5>1.4.2 Евклидовы кольца и факториальные кольца</h5> | ||
Строка 61: | Строка 61: | ||
<ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i,j\in\{1,\ldots,n\}</math>, <math>i<j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math> (<math>i\in\{1,\ldots,n-1\}</math>). Число циклов в перестановке <math>u</math>: <math>\kappa(u)</math>. | <ul><li>Транспозиции: <math>(i\;\,j)</math> (<math>i,j\in\{1,\ldots,n\}</math>, <math>i<j</math>). Фундаментальные транспозиции: <math>(i\;\,i+1)</math> (<math>i\in\{1,\ldots,n-1\}</math>). Число циклов в перестановке <math>u</math>: <math>\kappa(u)</math>. | ||
<li>Множество инверсий последовательности <math>f_1,\ldots,f_n</math>: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. Лемма о количестве инверсий. | <li>Множество инверсий последовательности <math>f_1,\ldots,f_n</math>: <math>\mathrm{inv}(f_1,\ldots,f_n)=\{(i,j)\in\{1,\ldots,n\}^2\!\mid i<j\;\land\,f_i>f_j\}</math>. Лемма о количестве инверсий. | ||
− | <p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N\!\setminus\!\{1\}</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> | + | <p><u>Лемма о количестве инверсий.</u> <i>Пусть <math>n\in\mathbb N\!\setminus\!\{1\}</math>, <math>f_1,\ldots,f_n\in\mathbb R</math>, <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math> и <math>i\in\{1,\ldots,n-1\}</math>; тогда<br>(1) <math>(f_1,\ldots,f_n)\circ(i\;\,i+1)=(f_1,\ldots,f_{i-1},f_{i+1},f_i,f_{i+2},\ldots,f_n)</math>;<br>(2) если <math>f_i>f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l-1</math>, и, если <math>f_i<f_{i+1}</math>, то <math>|\mathrm{inv}((f_1,\ldots,f_n)\circ(i\;\,i+1))|=l+1</math>.</i></p> |
− | <li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math> | + | <li><u>Теорема о сортировке пузырьком.</u> <i>Пусть <math>n\in\mathbb N_0</math>, <math>f_1,\ldots,f_n\in\mathbb R</math> и <math>l=|\mathrm{inv}(f_1,\ldots,f_n)|</math>; обозначим через <math>\hat{f_1},\ldots,\hat{f_n}</math> числа <math>f_1,\ldots,f_n</math>,<br>упорядоченные по неубыванию (то есть <math>\mathrm{inv}(\hat{f_1},\ldots,\hat{f_n})=\varnothing</math>); тогда<br>(1) существуют такие фундаментальные транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_l=(\hat{f_1},\ldots,\hat{f_n})</math>;<br>(2) для любых <math>l'\!\in\mathbb N_0</math> из существования таких фундаментальных транспозиций <math>u_1,\ldots,u_{l'}\!\in\mathrm S_n</math>, что <math>(f_1,\ldots,f_n)\circ u_1\circ\ldots\circ u_{l'}=(\hat{f_1},\ldots,\hat{f_n})</math>,<br>следует, что <math>l\le l'</math>, а также в том случае, когда числа <math>f_1,\ldots,f_n</math> попарно различны, что <math>l\equiv l'\;(\mathrm{mod}\;2)</math>.</i> |
<li>Знак посл.-сти: <math>\mathrm{sgn}(f_1,\ldots,f_n)=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если <math>f_1,\ldots,f_n</math> попарно различны, и <math>\mathrm{sgn}(f_1,\ldots,f_n)=0</math>, если <math>f_1,\ldots,f_n</math> не попарно различны. | <li>Знак посл.-сти: <math>\mathrm{sgn}(f_1,\ldots,f_n)=(-1)^{|\mathrm{inv}(f_1,\ldots,f_n)|}</math>, если <math>f_1,\ldots,f_n</math> попарно различны, и <math>\mathrm{sgn}(f_1,\ldots,f_n)=0</math>, если <math>f_1,\ldots,f_n</math> не попарно различны. | ||
<li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\mathrm{sgn}(u(1),\ldots,u(n))</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>. | <li>Знак перестановки <math>u</math>: <math>\mathrm{sgn}(u)=\mathrm{sgn}(u(1),\ldots,u(n))</math>. Теорема о свойствах знака. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>. | ||
Строка 70: | Строка 70: | ||
<h5>1.5.2 Группы матриц</h5> | <h5>1.5.2 Группы матриц</h5> | ||
<ul><li>Определитель матр. <math>a</math>: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n</math>. Примеры: <math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math>, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math>. | <ul><li>Определитель матр. <math>a</math>: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\cdot\ldots\cdot a^{u(n)}_n</math>. Примеры: <math>\det\!\Bigl(\begin{smallmatrix}\alpha&\beta\\\gamma&\delta\end{smallmatrix}\Bigr)\!=\alpha\delta-\beta\gamma</math>, <math>\det\!\biggl(\begin{smallmatrix}\alpha&\beta&\gamma\\\delta&\varepsilon&\zeta\\\eta&\theta&\iota\end{smallmatrix}\biggr)\!=\alpha\varepsilon\iota+\beta\zeta\eta+\gamma\delta\theta-\gamma\varepsilon\eta-\beta\delta\iota-\alpha\zeta\theta</math>. | ||
− | <li><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\in R</math> выполнено<br><math>\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)=c\,\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\,v_{i+1}\;\ldots\;v_n\bigr)+c'\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)</math>;<br>(2) для любых таких <math>v_1,\ldots,v_n\in R^n</math>, что <math>v_1,\ldots,v_n</math> не попарно различны, выполнено <math>\det\!\bigl(v_1\;\ldots\;v_n\bigr)=0</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a=\det a^\mathtt T</math>;<br>(4) для любых <math> | + | <li><u>Теорема о свойствах определителя.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>i\in\{1,\ldots,n\}</math>, <math>v_1,\ldots,v_{i-1},v,v',v_{i+1},\ldots,v_n\in R^n</math> и <math>c,c'\in R</math> выполнено<br><math>\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,c\,v+c'v'\;\,v_{i+1}\;\ldots\;v_n\bigr)=c\,\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v\;\,v_{i+1}\;\ldots\;v_n\bigr)+c'\det\!\bigl(v_1\;\ldots\;v_{i-1}\;\,v'\;\,v_{i+1}\;\ldots\;v_n\bigr)</math>;<br>(2) для любых таких <math>v_1,\ldots,v_n\in R^n</math>, что <math>v_1,\ldots,v_n</math> не попарно различны, выполнено <math>\det\!\bigl(v_1\;\ldots\;v_n\bigr)=0</math>;<br>(3) для любых <math>a\in\mathrm{Mat}(n,R)</math> выполнено <math>\det a=\det a^\mathtt T</math>;<br>(4) для любых <math>n',n''\!\in\mathbb N_0</math>, <math>a'\in\mathrm{Mat}(n',R)</math>, <math>a''\in\mathrm{Mat}(n'',R)</math> и <math>b\in\mathrm{Mat}(n',n'',R)</math> выполнено <math>\det\!\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)\!=\det a'\!\cdot\det a''</math>.</i> |
− | <li>Анонс: пусть <math>K</math> — поле; тогда <math>\ | + | <li>Анонс: пусть <math>K</math> — поле; тогда <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению. |
<li>Аффинная линейн. группа: <math>\mathrm{AGL}(n,K)=\{\Bigl(\begin{smallmatrix}a&v\\0&1\end{smallmatrix}\Bigr)\!\in\mathrm{Mat}(n+1,K)\mid a\in\mathrm{GL}(n,K),\,v\in K^n\}\le\mathrm{GL}(n+1,K)</math> (рассматр.-ются блочные матрицы). | <li>Аффинная линейн. группа: <math>\mathrm{AGL}(n,K)=\{\Bigl(\begin{smallmatrix}a&v\\0&1\end{smallmatrix}\Bigr)\!\in\mathrm{Mat}(n+1,K)\mid a\in\mathrm{GL}(n,K),\,v\in K^n\}\le\mathrm{GL}(n+1,K)</math> (рассматр.-ются блочные матрицы). | ||
<li>Специальн. линейн. группа: <math>\mathrm{SL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>. Утверждение: <math>\forall\,a,b\in\mathrm{Mat}(n,K)\;\bigl(a\cdot b=\mathrm{id}_n\Rightarrow\,b\cdot a=\mathrm{id}_n\bigr)</math>. | <li>Специальн. линейн. группа: <math>\mathrm{SL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>. Утверждение: <math>\forall\,a,b\in\mathrm{Mat}(n,K)\;\bigl(a\cdot b=\mathrm{id}_n\Rightarrow\,b\cdot a=\mathrm{id}_n\bigr)</math>. |
Версия 20:30, 8 января 2017
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
- Понятия и в коммут. кольце : и .
- Нормировка и (если они не ) в кольцах и : — в ; многочл. и нормированы — в .
- Главный идеал — идеал, порожденный одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) если — область целостности, то , а также ;
(3) ; если идеал главный, то ;
(4) и, если в кольце все идеалы главные, то . - Неприводимые и простые эл.-ты: и .
- Примеры: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если в кольце все идеалы главные, то ;
(3) для любых следующие условия эквивалентны: (у1) и (у2) — область целостности;
(4) если — область целостности, в которой все идеалы главные, то для любых следующие условия эквивалентны:
(у1) , (у2) , (у3) — область целостности и (у4) — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма: , где и .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) не существует такой бесконечной последовательности элементов кольца , что для любых выполнено ;
(3) если , то для любых выполнено ;
(4) в кольце все идеалы главные, а также . - Факториальное кольцо — область целостности с -единственным разложением любого ненулевого элемента в произведение неприводимых элементов.
- Примеры: — факториальное кольцо (это основная теорема арифметики); если факториально, то и факториально (без доказательства).
- Теорема о факториальности евклидовых колец.
(1) Пусть — такая область целостности, что не существует такой бесконечной последовательности элементов кольца , что
для любых выполнено , и, кроме того, ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (и, значит, кольца и , где — поле, факториальны). - Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) ; ;
(2) ; ; .
1.4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
- Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда .
- Соотношение Безу для элементов и евкл. кольца: , где и — коэфф.-ты Безу. Нахождение в группе .
- Расширенный алгоритм Евклида в евкл. кольце: и ; на -м шаге и ; тогда .
- Китайская теорема об остатках для евклидовых колец. Пусть — евклидово кольцо, , и попарно взаимно
просты (то есть ); обозначим через элемент кольца ; тогда отображение
определено корректно и является изоморфизмом колец. - Китайская теорема об остатках для целых чисел и многочленов.
(1) Пусть , и попарно взаимно просты (); обозначим через
число ; тогда отображение — изоморфизм колец.
(2) Пусть — поле, , и попарно взаимно просты ();
обозначим через многочлен ; тогда отображение — изоморфизм колец. - Функция Эйлера: . Пример: если , то . Теорема Эйлера и следствие из нее.
Теорема Эйлера. Пусть , и ; тогда .
Следствие из теоремы Эйлера. Пусть , , и ; тогда .
- Теорема о функции Эйлера.
(1) Пусть и ; тогда .
(2) Пусть и ; тогда .
(3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
; тогда .
1.4.4 Производная многочлена, интерполяция, рациональные дроби
- Сопоставление многочлену формальной производной . Лемма о свойствах формальной производной.
Лемма о свойствах формальной производной. Пусть — кольцо; тогда для любых и выполнено (и, значит,
отображение — эндоморфизм группы ) и , а также (это правило Лейбница). - Корень кратности многочлена : . Теорема о кратных корнях.
Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
(1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
(2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
(3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и . - Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный такой
многочлен , что и для любых выполнено , и этот многочлен можно найти следующими способами:
(1) , где (это интерполяционная формула Лагранжа);
(2) , где и (это интерполяционная формула Ньютона). - Поле частных: ; и , .
- Лемма о поле частных. Отожд.-е и . Примеры: и — поле рациональных дробей.
Лемма о поле частных. Пусть — область целостности; тогда
(1) отображение — инъективный гомоморфизм колец;
(2) для любых и выполнено (и, значит, ). - Несократимая запись: (, нормир.). Правильные дроби: (). Лемма о несократимой записи и правильных дробях.
Лемма о несократимой записи и правильных дробях. Пусть — поле и ; тогда
(1) существуют единственные такие многочлены , что , и многочлен нормирован;
(2) существуют единственные такие многочлен и правильная дробь , что . - Примарные и простейшие дроби: (, нормир., , ) и (, нормир., , ).
- Алгоритмы разложения правильной дроби в сумму примарных дробей и примарной дроби в сумму простейших дробей (см. пункт 3 в § 4 главы 5 в [3]).
1.4.5 Кольца матриц
- Множества матриц, столбцов и строк: , и . Сложение матриц и умножение матриц на скаляры.
- Умножение матриц: . Внешняя ассоциативность умнож.-я. Кольцо , группа .
- Диагональные и скалярные матрицы. Верхнетреугольные, нижнетреугольные и треугольные матрицы. Блочные и блочно-треугольные матрицы.
- Матрицы, столбцы, строки с одной единицей: , , . Утверждение: , , .
- Строки матрицы : . Столбцы матрицы : . Утверждение: и .
- Транспонирование матрицы : . Утверждение: пусть — комм. кольцо, и ; тогда .
- След квадр. матрицы : . Утверждение: пусть — комм. кольцо, и ; тогда .
- Теорема о представлении комплексных чисел вещественными матрицами и о представлении кватернионов комплексными матрицами.
(1) Отображение — инъективный гомоморфизм колец (и, значит, ).
(2) Отображение — инъективный гомоморфизм колец (и, значит, ).
1.5 Группы (часть 2)
1.5.1 Симметрические группы
- Транспозиции: (, ). Фундаментальные транспозиции: (). Число циклов в перестановке : .
- Множество инверсий последовательности : . Лемма о количестве инверсий.
Лемма о количестве инверсий. Пусть , , и ; тогда
(1) ;
(2) если , то , и, если , то . - Теорема о сортировке пузырьком. Пусть , и ; обозначим через числа ,
упорядоченные по неубыванию (то есть ); тогда
(1) существуют такие фундаментальные транспозиции , что ;
(2) для любых из существования таких фундаментальных транспозиций , что ,
следует, что , а также в том случае, когда числа попарно различны, что . - Знак посл.-сти: , если попарно различны, и , если не попарно различны.
- Знак перестановки : . Теорема о свойствах знака. Знакопеременная группа: .
Теорема о свойствах знака. Пусть ; тогда
(1) отображение — гомоморфизм групп и, если , то это сюръективный гомоморфизм групп;
(2) для любых таких , что , выполнено и ;
(3) для любых таких и , что попарно различны, выполнено ;
(4) для любых выполнено . - Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только если
(неупорядоченные) наборы длин циклов перестановок и (то есть цикловые типы перестановок и ) равны.
1.5.2 Группы матриц
- Определитель матр. : . Примеры: , .
- Теорема о свойствах определителя. Пусть — коммутативное кольцо и ; тогда
(1) для любых , и выполнено
;
(2) для любых таких , что не попарно различны, выполнено ;
(3) для любых выполнено ;
(4) для любых , , и выполнено . - Анонс: пусть — поле; тогда и — гомоморфизм моноидов по умножению.
- Аффинная линейн. группа: (рассматр.-ются блочные матрицы).
- Специальн. линейн. группа: . Утверждение: .
- Ортогональная группа: . Специальная ортогон. группа: .
- Унитарная группа: . Специальная унитарная группа: .
1.5.3 Действия групп на множествах
- Действие группы на множестве — гомоморфизм моноидов . Утверждение: . Обозначение: .
- Примеры: группа действует на , группы матриц действуют на , группа действует на сдвигами (где ) и на сопряжениями.
- Динамическая система с дискретнымнепрерывным временем (каскадпоток) — множество с действием группы группы . Теорема Кэли.
Теорема Кэли. Пусть — группа; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — биекция (то есть );
(2) отображение — инъективный гомоморфизм групп. - -Множество — множество с действием группы . Гомоморфизмы -множеств: .
- Орбита точки : . Утверждение: , где . Разбиение на орбиты: .
- Транзитивное действие (однородное -мн.-во): . Стабилизатор: . Точное действие: .
- Свободное действие (своб. -мн.-во): . Торсор над — однородное свободное -мн.-во ().
- Теорема о классах смежности по стабилизатору. Неподвижные точки: . Лемма Бернсайда. Пример: .
Теорема о классах смежности по стабилизатору. Пусть — группа, — -множество и ; тогда
(1) отображение определено корректно, является инъективным гомоморфизмом -множеств и его образ есть
(и, значит, если — однородное -множество, то данное отображение — изоморфизм -множеств);
(2) если , то .Лемма Бернсайда. Пусть — группа, — -множество и ; тогда .
1.5.4 Автоморфизмы, коммутант, полупрямое произведение групп
- Группа автоморфизмов: . Пример: . Группа внутр.-х автоморф.-в: .
- Центр: . Теорема о внутренних автоморфизмах. Группа внешних автоморф.-в: .
Теорема о внутренних автоморфизмах. Пусть — группа; тогда отображение — гомоморфизм групп, его ядро есть ,
его образ есть (и, значит, ) и, кроме того, . - Коммутатор элементов группы (мультипликативный коммутатор): . Коммутант группы : .
- Утверждение: . Теорема о коммутанте. Пример: (док.-во только включения ). Абелианизация группы : .
Теорема о коммутанте. Пусть — группа и ; тогда группа абелева, если и только если (и, значит, абелева).
- Простая группа: . Примеры: группы () и ( — поле и ) простые (без док.-ва).
- Полупрямое произв.-е относит. действия (): с бинарной операцией .
- Утверждение: — гомоморфизм групп. Пример: , где .
- Теорема о полупрямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то .