Алгебра phys 1 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 64: | Строка 64: | ||
<li>Порядок элемента: <math>\mathrm{ord}(g)=\min\{n\in\mathbb N\mid g^n=1\}</math> (<math>\mathrm{ord}(g)\in\mathbb N\cup\{\infty\}</math>). Утверждение: <i>пусть <math>n=\mathrm{ord}(g)\in\mathbb N</math>; тогда <math>\{a\in\mathbb Z\mid g^a=1\}=n\,\mathbb Z</math></i>. | <li>Порядок элемента: <math>\mathrm{ord}(g)=\min\{n\in\mathbb N\mid g^n=1\}</math> (<math>\mathrm{ord}(g)\in\mathbb N\cup\{\infty\}</math>). Утверждение: <i>пусть <math>n=\mathrm{ord}(g)\in\mathbb N</math>; тогда <math>\{a\in\mathbb Z\mid g^a=1\}=n\,\mathbb Z</math></i>. | ||
<li><u>Лемма о порядке элемента.</u> <i>Пусть <math>G</math> — группа и <math>g\in G</math>; тогда <math>\mathrm{ord}(g)=|\langle g\rangle|</math> и, если <math>|G|<\infty</math>, то <math>\mathrm{ord}(g)</math> делит <math>|G|</math> и <math>g^{|G|}\!=1</math>.</i> | <li><u>Лемма о порядке элемента.</u> <i>Пусть <math>G</math> — группа и <math>g\in G</math>; тогда <math>\mathrm{ord}(g)=|\langle g\rangle|</math> и, если <math>|G|<\infty</math>, то <math>\mathrm{ord}(g)</math> делит <math>|G|</math> и <math>g^{|G|}\!=1</math>.</i> | ||
− | <li><u> | + | <li><u>Теорема об обратимых остатках.</u><br><i>(1) Пусть <math>n\in\mathbb N</math>; тогда <math>(\mathbb Z/n)^\times\!=\{a\in\mathbb Z/n\mid\gcd(a,n)=1\}=\{a\in\mathbb Z/n\mid(\mathbb Z/n)^+\!=\langle a\rangle\}</math>.<br>(2) Пусть <math>p\in\mathbb\mathbb P</math>; тогда <math>(\mathbb Z/p)^\times\!=(\mathbb Z/p)\!\setminus\!\{0\}</math>.<br>(3) Пусть <math>p\in\mathbb\mathbb P</math>, <math>a\in\mathbb Z</math> и <math>p</math> не делит <math>a</math>; тогда <math>a^{p-1}\!\equiv1\;(\mathrm{mod}\;p)</math> (это малая теорема Ферма).</i> |
<li>Циклическая группа: <math>\exists\,d\in G\;\bigl(G=\langle d\rangle\bigr)</math>. Примеры: <math>(\mathbb Z/n)^+</math> (<math>n\in\mathbb N</math>), <math>\mathbb Z^+</math>. Теорема о циклических группах. Первообразный корень по модулю <math>n</math>. | <li>Циклическая группа: <math>\exists\,d\in G\;\bigl(G=\langle d\rangle\bigr)</math>. Примеры: <math>(\mathbb Z/n)^+</math> (<math>n\in\mathbb N</math>), <math>\mathbb Z^+</math>. Теорема о циклических группах. Первообразный корень по модулю <math>n</math>. | ||
− | <p><u>Теорема о циклических группах.</u> <i>Пусть <math>G</math> — | + | <p><u>Теорема о циклических группах.</u> <i>Пусть <math>G</math> — циклическая группа и <math>n=|G|</math>; тогда <math>n\in\mathbb N</math> и <math>G\cong(\mathbb Z/n)^+</math> или <math>n=\infty</math> и <math>G\cong\mathbb Z^+</math>.</i></p></ul> |
<h5>1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп</h5> | <h5>1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп</h5> | ||
Строка 132: | Строка 132: | ||
<li>Тригонометрическая форма компл. числа: <math>r\,(\cos\varphi+\sin\varphi\,\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Утверждение: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}</math>. | <li>Тригонометрическая форма компл. числа: <math>r\,(\cos\varphi+\sin\varphi\,\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Утверждение: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}</math>. | ||
<li>Группа корней <math>n</math>-й степени из <math>1</math>: <math>\{a\in\mathbb C\mid a^n\!=1\}=\{\mathrm e^{\frac{2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle\cong(\mathbb Z/n)^+</math>. Первообразный корень <math>n</math>-й степени из <math>1</math>. | <li>Группа корней <math>n</math>-й степени из <math>1</math>: <math>\{a\in\mathbb C\mid a^n\!=1\}=\{\mathrm e^{\frac{2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle\cong(\mathbb Z/n)^+</math>. Первообразный корень <math>n</math>-й степени из <math>1</math>. | ||
− | <li>Алгебраическая замкнутость поля <math>\mathbb C</math>: | + | <li>Формула Кардано (без доказательства). Алгебраическая замкнутость поля <math>\mathbb C</math>: пусть <math>f\in\mathbb C[x]\!\setminus\!\mathbb C</math>; тогда <math>\exists\,a\in\mathbb C\;\bigl(f(a)=0\bigr)</math> (без доказательства). |
− | < | + | <li><u>Лемма о вещественных многочленах.</u> <i>Пусть <math>f\in\mathbb R[x]</math>, <math>\alpha,\beta\in\mathbb R</math> и <math>\beta\ne0</math>; тогда <math>f(\alpha+\beta\,\mathrm i)=0\,\Leftrightarrow f(\alpha-\beta\,\mathrm i)=0\,\Leftrightarrow(x^2-2\alpha\,x+\alpha^2+\beta^2)\,|\,f</math>.</i></ul> |
<h5>1.3.4 Тело кватернионов</h5> | <h5>1.3.4 Тело кватернионов</h5> |
Версия 19:30, 6 января 2017
1 Основы алгебры
| ||||||||||
| ||||||||||
|
1.1 Множества, отображения, отношения
1.1.1 Множества
- Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
- Лемма о логических связках. Пусть , , — высказывания; тогда
(1) , , , ;
(2) , ;
(3) , , , . - Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
- Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
- Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
- Лемма об операциях над множествами. Пусть , , — множества; тогда
(1) , , , ;
(2) , ;
(3) если — множество и , то и . - Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
- — порядок (количество элементов) множества , — множество подмножеств множества , — -я степень множества ().
1.1.2 Отображения
- Множество отображений, действующих из мн.-ва в мн.-во : . Область, кообласть, график отображения : , , .
- Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
- Сужения отображения ( и ): и . Сокращенная запись образа: .
- Инъекции: . Сюръекции: .
- Биекции: . Композиция отображений: . Тождественное отображение: .
- Теорема о композиции отображений. Пусть , — множества и ; тогда
(1) , и, если , — множества, и , то ;
(2) если , то , если и только если ;
(3) , если и только если ;
(4) , если и только если ( — биекция, обратная к биекции ). - Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .
1.1.3 Отношения
- Множество отношений между множествами и : . Область, кообласть, график отношения : , , . Примеры.
- Отношения эквивалентности: .
- Класс эквивалентности: . Утверждение: . Фактормножество: .
- Разбиения: . Утверждение: . Трансверсали.
- Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
- Отношение : . Слои отображения : (). Факторотображение — биекция.
1.2 Группы (часть 1)
1.2.1 Множества с операцией
- Внутренняя -арная операция на — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
- Гомоморфизмы между мн.-вами с операцией: .
- Утверждение: пусть и ; тогда . Изоморфизмы: .
- Утверждение: пусть ; тогда . Эндоморфизмы: . Автоморфизмы: .
- Обозначение по Минковскому: . Примеры: , , .
- Инфиксная запись бинарных операций. Ассоциативность: . Коммутативность: .
- Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).
1.2.2 Моноиды и группы (основные определения и примеры)
- Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
- Примеры: числовые моноиды (включая моноиды остатков), моноиды функций, моноиды слов , моноиды отображений .
- Обратимые элементы: . Единственность обратного элемента. Утверждение: .
- Неприводимые элементы: . Пример: . Делимость и ассоциированность в коммут. моноиде.
- Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
- Примеры: числовые группы, группы функций, свободные группы , группы биекций , группы автоморфизмов графов .
- Мультипликативные обозначения в группе : , , , (). Аддитивные обозначения в абелевой группе : , , , ().
- Симметрические группы: , . Запись перестановки в виде посл.-сти значений, цикловая запись. Лемма о циклах.
Лемма о циклах. Пусть , , числа попарно различны и ; тогда
, а также .
1.2.3 Подгруппы, классы смежности, циклические группы
- Подгруппа: . Подгруппа, порожденная мн.-вом : .
- Утверждение: , а также . Пример: .
- Отношения и : и . Утверждение: и .
- Множества классов смежности: и . Теорема Лагранжа. Индекс: .
Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).
- Порядок элемента: (). Утверждение: пусть ; тогда .
- Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
- Теорема об обратимых остатках.
(1) Пусть ; тогда .
(2) Пусть ; тогда .
(3) Пусть , и не делит ; тогда (это малая теорема Ферма). - Циклическая группа: . Примеры: (), . Теорема о циклических группах. Первообразный корень по модулю .
Теорема о циклических группах. Пусть — циклическая группа и ; тогда и или и .
1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп
- Нормальная подгруппа: . Пример: .
- Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
- Нормальная подгруппа, порожденная мн.-вом : . Утверждение: . Примеры.
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
(1) для любых и выполнено (и, значит, );
(2) , если и только если . - Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — группы и ; тогда .
- Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
- Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то .
1.3 Кольца (часть 1)
1.3.1 Определения и конструкции, связанные с кольцами
- Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
- Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
- Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
- Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
(1) для любых и выполнено (и, значит, );
(2) , если и только если . - Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.
Теорема о гомоморфизме. Пусть — кольца и ; тогда .
- Кольца без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
- Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2 Кольца многочленов
- Одночлены от свободных переменных — слова, принадлежащие моноиду . Кольцо многочленов .
- Кольцо многочленов . Степень и старший коэфф. многочлена. Лемма о делении многочленов с остатком. Операции и для многочленов.
Лемма о делении многочленов с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим;
тогда существуют единственные такие многочлены , что и . - Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
- Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.
Теорема Безу. Пусть — коммутативное кольцо, , и ; тогда .
Теорема о корнях многочлена. Пусть — область целостности и ; тогда .
Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .
- Деление с остатком в кольце . Кольцо остатков: (). Утверждение: .
- Сводная таблица об элементарных понятиях теории коммутативных колец (с примерами для колец и , где — поле).
Понятие в коммутативном кольце | Понятие в кольце | Понятие в кольце , где — поле |
---|---|---|
Обратимые элементы кольца : |
Обратимые целые числа: |
Обратимые многочлены над : |
Неприводимые элементы кольца : |
Неприводимые целые числа: |
Неприводимые многочлены над : |
Делимость в кольце (): |
Делимость в кольце (): |
Делимость в кольце (): |
Строгая делимость в кольце (): |
Строгая делимость в кольце (): |
Строгая делимость в кольце (): |
Ассоциированность в кольце (): ; если — область целостности, то |
Ассоциированность в кольце (): |
Ассоциированность в кольце (): |
Факторкольцо кольца по идеалу, порожденному элементом : |
Факторкольцо кольца по идеалу, порожденному натуральным числом : |
Факторкольцо кольца по идеалу, порожденному ненулевым многочленом над : |
1.3.3 Поле комплексных чисел
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Единичная окружность: . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
(2) Для любых выполнено (и, значит, ). - Тригонометрическая форма компл. числа: . Утверждение: .
- Группа корней -й степени из : . Первообразный корень -й степени из .
- Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
- Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4 Тело кватернионов
- Кольцо кватернионов: , где , а также , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
- Лемма об умножении кватернионов. Сопряжение: . Утверждение: . Модуль: .
Лемма об умножении кватернионов. Для любых и выполнено .
- Теорема о свойствах кватернионов.
(1) Для любых выполнено и, если , то (и, значит, — тело).
(2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .