Алгебра phys 1 сентябрь–октябрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 72: Строка 72:
 
<li>Автоморфизм сопряжения при помощи элемента <math>g</math>: <math>\biggl(\!\begin{align}G&\to G\\x&\mapsto g\,x\,g^{-1}\!\end{align}\!\biggr)</math>. Отношение сопряженности: <math>\bigl(</math><math>x</math> и <math>\breve x</math> сопряжены<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in G\;\bigl(\breve x=g\,x\,g^{-1}\bigr)</math>.
 
<li>Автоморфизм сопряжения при помощи элемента <math>g</math>: <math>\biggl(\!\begin{align}G&\to G\\x&\mapsto g\,x\,g^{-1}\!\end{align}\!\biggr)</math>. Отношение сопряженности: <math>\bigl(</math><math>x</math> и <math>\breve x</math> сопряжены<math>\bigr)</math><math>\;\Leftrightarrow\;</math><math>\exists\,g\in G\;\bigl(\breve x=g\,x\,g^{-1}\bigr)</math>.
 
<li>Нормальная подгруппа, порожденная мн.-вом <math>T</math>: <math>(T)\trianglelefteq G\;\land\;\forall\,H\trianglelefteq G\;\bigl(T\subseteq H\,\Leftrightarrow\,(T)\subseteq H\bigr)</math>. Утверждение: <math>(T)=\bigl\langle\!\bigcup_{g\in G}g\,Tg^{-1}\bigr\rangle</math>. Примеры.
 
<li>Нормальная подгруппа, порожденная мн.-вом <math>T</math>: <math>(T)\trianglelefteq G\;\land\;\forall\,H\trianglelefteq G\;\bigl(T\subseteq H\,\Leftrightarrow\,(T)\subseteq H\bigr)</math>. Утверждение: <math>(T)=\bigl\langle\!\bigcup_{g\in G}g\,Tg^{-1}\bigr\rangle</math>. Примеры.
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(1)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq G</math>, <math>\mathrm{Im}\,f\le J</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
+
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(1)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq G</math> и <math>\,\mathrm{Im}\,f\le J</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда<br>(1) для любых <math>j\in J</math> и <math>g_0\in f^{-1}(j)</math> выполнено <math>f^{-1}(j)=g_0\,\mathrm{Ker}\,f</math> (и, значит, <math>\{f^{-1}(j)\mid j\in\mathrm{Im}\,f\}=G/\,\mathrm{Ker}\,f</math>);<br>(2) <math>f\in\mathrm{Inj}(G,J)</math>, если и только если <math>\,\mathrm{Ker}\,f=\{1\}</math>.</i></p>
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда<br>(1) для любых <math>j\in J</math> и <math>g_0\in f^{-1}(j)</math> выполнено <math>f^{-1}(j)=g_0\,\mathrm{Ker}\,f</math> (и, значит, <math>\{f^{-1}(j)\mid j\in\mathrm{Im}\,f\}=G/\,\mathrm{Ker}\,f</math>);<br>(2) <math>f\in\mathrm{Inj}(G,J)</math>, если и только если <math>\,\mathrm{Ker}\,f=\{1\}</math>.</i></p>
 
<li>Факторгруппа: <math>G/H</math> с фактороперациями (<math>H\trianglelefteq G</math>). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: <math>\mathbb Z^+\!/n\,\mathbb Z\cong(\mathbb Z/n)^+</math>.
 
<li>Факторгруппа: <math>G/H</math> с фактороперациями (<math>H\trianglelefteq G</math>). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: <math>\mathbb Z^+\!/n\,\mathbb Z\cong(\mathbb Z/n)^+</math>.
 
<p><u>Теорема о гомоморфизме.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда <math>G/\,\mathrm{Ker}\,f\cong\mathrm{Im}\,f</math>.</i></p>
 
<p><u>Теорема о гомоморфизме.</u> <i>Пусть <math>G,J</math> — группы и <math>f\in\mathrm{Hom}(G,J)</math>; тогда <math>G/\,\mathrm{Ker}\,f\cong\mathrm{Im}\,f</math>.</i></p>
<li>Прямое произведение групп: <math>F\times H</math> с покомпонентными операциями. Утверждение: <math>\biggl(\!\begin{align}F\times H&\to F\\(f,h)&\mapsto f\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}F\times H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизмы групп.
+
<li>Прямое произведение групп: <math>F\times H</math> с покомпонентными операциями. Утверждение: <i><math>\biggl(\!\begin{align}F\times H&\to F\\(f,h)&\mapsto f\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}F\times H&\to H\\(f,h)&\mapsto h\end{align}\!\biggr)</math> — гомоморфизмы групп</i>.
 
<li><u>Теорема о прямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{mult}\in\mathrm{Hom}(F\times H,G)\,\Leftrightarrow\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\mathrm{mult}\in\mathrm{Iso}(F\times H,G)\,\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то <math>\mathrm{mult}\in\mathrm{Iso}(F\times H,G)\,\Leftrightarrow\,F\cap H=\{1\}\,\land\,|G|=|F|\,|H|\,\land\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>.</i></ul>
 
<li><u>Теорема о прямом произведении.</u> <i>Пусть <math>G</math> — группа и <math>F,H\le G</math>; обозначим через <math>\mathrm{mult}</math> отображение <math>\biggl(\!\begin{align}F\times H&\to G\\(f,h)&\mapsto f\,h\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{mult}\in\mathrm{Hom}(F\times H,G)\,\Leftrightarrow\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>, <math>\mathrm{mult}^{-1}(1)=\{(g,g^{-1})\mid g\in F\cap H\}</math> и <math>\,\mathrm{Im}\,\mathrm{mult}=FH</math>;<br>(2) <math>\mathrm{mult}\in\mathrm{Iso}(F\times H,G)\,\Leftrightarrow\,F\cap H=\{1\}\,\land\,G=FH\,\land\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>;<br>(3) если <math>|G|<\infty</math>, то <math>\mathrm{mult}\in\mathrm{Iso}(F\times H,G)\,\Leftrightarrow\,F\cap H=\{1\}\,\land\,|G|=|F|\,|H|\,\land\,\forall\,f\in F,\,h\in H\;\bigl(f\,h=h\,f\bigr)</math>.</i></ul>
  
Строка 85: Строка 85:
 
<li>Подкольцо: <math>S\le R\,\Leftrightarrow\,S+S\subseteq S\,\land\,0\in S\,\land\,-S\subseteq S\,\land\,S\cdot S\subseteq S\,\land\,1\in S</math>. Подкольцо, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle</math>. Кольца вида <math>S[r_1,\ldots,r_n]</math>.
 
<li>Подкольцо: <math>S\le R\,\Leftrightarrow\,S+S\subseteq S\,\land\,0\in S\,\land\,-S\subseteq S\,\land\,S\cdot S\subseteq S\,\land\,1\in S</math>. Подкольцо, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle</math>. Кольца вида <math>S[r_1,\ldots,r_n]</math>.
 
<li>Идеал: <math>I\trianglelefteq R\,\Leftrightarrow\,I+I\subseteq I\,\land\,0\in I\,\land\,R\cdot I\cdot R\subseteq I</math>. Идеал, порожд. мн.-вом <math>T</math>: <math>(T)</math>. Идеал, порожд. элементом <math>r</math> коммут. кольца <math>R</math>: <math>(r)=rR</math>.
 
<li>Идеал: <math>I\trianglelefteq R\,\Leftrightarrow\,I+I\subseteq I\,\land\,0\in I\,\land\,R\cdot I\cdot R\subseteq I</math>. Идеал, порожд. мн.-вом <math>T</math>: <math>(T)</math>. Идеал, порожд. элементом <math>r</math> коммут. кольца <math>R</math>: <math>(r)=rR</math>.
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(0)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq R</math>, <math>\mathrm{Im}\,f\le U</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
+
<li>Ядро и образ гомоморфизма <math>f</math>: <math>\mathrm{Ker}\,f=f^{-1}(0)</math> и <math>\mathrm{Im}\,f</math>. Утверждение: <i><math>\mathrm{Ker}\,f\trianglelefteq R</math> и <math>\,\mathrm{Im}\,f\le U</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>R,U</math> — кольца и <math>f\in\mathrm{Hom}(R,U)</math>; тогда<br>(1) для любых <math>u\in U</math> и <math>r_0\in f^{-1}(u)</math> выполнено <math>f^{-1}(u)=r_0+\mathrm{Ker}\,f</math> (и, значит, <math>\{f^{-1}(u)\mid u\in\mathrm{Im}\,f\}=R/\,\mathrm{Ker}\,f</math>);<br>(2) <math>f\in\mathrm{Inj}(R,U)</math>, если и только если <math>\,\mathrm{Ker}\,f=\{0\}</math>.</i></p>
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>R,U</math> — кольца и <math>f\in\mathrm{Hom}(R,U)</math>; тогда<br>(1) для любых <math>u\in U</math> и <math>r_0\in f^{-1}(u)</math> выполнено <math>f^{-1}(u)=r_0+\mathrm{Ker}\,f</math> (и, значит, <math>\{f^{-1}(u)\mid u\in\mathrm{Im}\,f\}=R/\,\mathrm{Ker}\,f</math>);<br>(2) <math>f\in\mathrm{Inj}(R,U)</math>, если и только если <math>\,\mathrm{Ker}\,f=\{0\}</math>.</i></p>
 
<li>Факторкольцо: <math>R/I</math> с фактороперациями (<math>I\trianglelefteq R</math>). Теорема о гомоморфизме. Прямое произведение колец: <math>Q\times S</math> с покомпонентными операциями.
 
<li>Факторкольцо: <math>R/I</math> с фактороперациями (<math>I\trianglelefteq R</math>). Теорема о гомоморфизме. Прямое произведение колец: <math>Q\times S</math> с покомпонентными операциями.

Версия 16:20, 5 января 2017

1  Основы алгебры

По мере развития науки нам хочется получить нечто большее, чем просто формулу. Сначала мы наблюдаем явления, затем с по-
мощью измерений получаем числа и, наконец, находим закон, связывающий эти числа. Но истинное величие науки состоит в том,
что мы можем найти такой способ рассуждения, при котором закон становится очевидным.
Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике. Том 3
В принципе математику можно рассматривать как разновидность утонченной, усовершенствованной логики. Замечательно, что,
построив правила этой логики и выучив их, человек получил орудие гораздо более мощное, чем обыкновенный «здравый смысл»,
основанный на традиционной, «домашней» логике. Человек руками создает простые орудия, применяя их, строит станки, с помо-
щью которых создает еще более совершенные и сложные механизмы — и с помощью этих механизмов он способен сделать то,
что недоступно голым рукам. Вот так же точно и математика, развивая все более сложные теории и создавая новые понятия, да-
ет возможность овладеть самыми необычными явлениями природы.
Я.Б. Зельдович, И.М. Яглом. Высшая математика для начинающих физиков и техников
Развитие современной физики потребовало такого математического аппарата, который непрерывно расширяет свои основания и
становится все более и более абстрактным. Неевклидова геометрия и некоммутативная алгебра, которые одно время считались
чистой игрой разума и упражнениями для логических размышлений, теперь оказались необходимыми для описания весьма общих
закономерностей физического мира. Похоже, что этот процесс возрастания степени абстракции будет продолжаться и в будущем и
что развитие физики следует связывать с непрерывной модификацией и обобщением аксиом, лежащих в основе математики, а не
с логическим развитием какой бы то ни было математической схемы, построенной на фиксированном основании.
П.А.М. Дирак. Квантованные сингулярности в электромагнитном поле

1.1  Множества, отображения, отношения

1.1.1  Множества
  • Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
  • Лемма о логических связках. Пусть , , — высказывания; тогда
    (1) , , , ;
    (2) , ;
    (3) , , , .
  • Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
  • Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
  • Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
  • Лемма об операциях над множествами. Пусть , , — множества; тогда
    (1) , , , ;
    (2) , ;
    (3) если — множество и , то и .
  • Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
  • — порядок (количество элементов) множества , — множество подмножеств множества , -я степень множества ().
1.1.2  Отображения
  • Множество отображений, действующих из мн.-ва в мн.-во : . Область, кообласть, график отображения : , , .
  • Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
  • Сужения отображения ( и ): и . Сокращенная запись образа: .
  • Инъекции: . Сюръекции: .
  • Биекции: . Композиция отображений: . Тождественное отображение: .
  • Теорема о композиции отображений. Пусть , — множества и ; тогда
    (1) , и, если , — множества, и , то ;
    (2) если , то , если и только если ;
    (3) , если и только если ;
    (4) , если и только если ( — биекция, обратная к биекции ).
  • Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .
1.1.3  Отношения
  • Множество отношений между множествами и : . Область, кообласть, график отношения : , , . Примеры.
  • Отношения эквивалентности: .
  • Класс эквивалентности: . Утверждение: . Фактормножество: .
  • Разбиения: . Утверждение: . Трансверсали.
  • Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
  • Отношение : . Слои отображения : (). Факторотображение — биекция.

1.2  Группы (часть 1)

1.2.1  Множества с операцией
  • Внутренняя -арная операция на — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
  • Гомоморфизмы между мн.-вами с операцией: .
  • Утверждение: пусть и ; тогда . Изоморфизмы: .
  • Утверждение: пусть ; тогда . Эндоморфизмы: . Автоморфизмы: .
  • Обозначение по Минковскому: . Примеры: , , .
  • Инфиксная запись бинарных операций. Ассоциативность: . Коммутативность: .
  • Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.

    Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
    расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).

1.2.2  Моноиды и группы (основные определения и примеры)
  • Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
  • Примеры: числовые моноиды (включая моноиды остатков), моноиды функций, моноиды слов , моноиды отображений .
  • Обратимые элементы: . Единственность обратного элемента. Утверждение: .
  • Неприводимые элементы: . Пример: . Делимость и ассоциированность в коммут. моноиде.
  • Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
  • Примеры: числовые группы, группы функций, свободные группы , группы биекций , группы автоморфизмов графов .
  • Мультипликативные обозначения в группе : , , , (). Аддитивные обозначения в абелевой группе : , , , ().
  • Симметрические группы: , . Запись перестановки в виде посл.-сти значений, цикловая запись. Лемма о циклах.

    Лемма о циклах. Пусть , , числа попарно различны и ; тогда
    , а также .

1.2.3  Подгруппы, классы смежности, циклические группы
  • Подгруппа: . Подгруппа, порожденная мн.-вом : .
  • Утверждение: , а также . Пример: .
  • Отношения и : и . Утверждение: и .
  • Множества классов смежности: и . Теорема Лагранжа. Индекс: .

    Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).

  • Порядок элемента: (). Утверждение: пусть ; тогда .
  • Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
  • Лемма об обратимых остатках. Пусть и ; тогда .
  • Циклическая группа: . Примеры: (), . Теорема о циклических группах. Первообразный корень по модулю .

    Теорема о циклических группах. Пусть — циклич. группа; обозначим через величину ; тогда и или и .

1.2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
  • Нормальная подгруппа: . Пример: .
  • Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
  • Нормальная подгруппа, порожденная мн.-вом : . Утверждение: . Примеры.
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — группы и ; тогда .

  • Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
  • Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то .

1.3  Кольца (часть 1)

1.3.1  Определения и конструкции, связанные с кольцами
  • Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
  • Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
  • Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
  • Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
  • Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.

    Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.

    Теорема о гомоморфизме. Пусть — кольца и ; тогда .

  • Кольца без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
  • Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2  Кольца многочленов
  • Одночлены от свободных переменных — слова, принадлежащие моноиду . Кольцо многочленов .
  • Кольцо многочленов . Степень и старший коэфф. многочлена. Лемма о делении многочленов с остатком. Операции и для многочленов.

    Лемма о делении многочленов с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим;
    тогда существуют единственные такие многочлены , что и .

  • Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
  • Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.

    Теорема Безу. Пусть — коммутативное кольцо, , и ; тогда .

    Теорема о корнях многочлена. Пусть — область целостности и ; тогда .

    Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .

  • Деление с остатком в кольце . Кольцо остатков: (). Утверждение: .
  • Сводная таблица об элементарных понятиях теории коммутативных колец (с примерами для колец и , где — поле).

Понятие в коммутативном кольце Понятие в кольце Понятие в кольце , где — поле
Обратимые элементы кольца :
Обратимые целые числа:
Обратимые многочлены над :
Неприводимые элементы кольца :
Неприводимые целые числа:

Неприводимые многочлены над :
Делимость в кольце ():
Делимость в кольце ():
Делимость в кольце ():
Строгая делимость в кольце ():
Строгая делимость в кольце ():

Строгая делимость в кольце ():

Ассоциированность в кольце ():
;
если — область целостности, то
Ассоциированность в кольце ():
Ассоциированность в кольце ():
Факторкольцо кольца по идеалу,
порожденному элементом :
Факторкольцо кольца по идеалу,
порожденному натуральным числом :

Факторкольцо кольца по идеалу,
порожденному ненулевым многочленом над :

1.3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Единичная окружность: . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
    (2) Для любых выполнено (и, значит, ).

  • Тригонометрическая форма компл. числа: . Утверждение: .
  • Группа корней -й степени из : . Первообразный корень -й степени из .
  • Алгебраическая замкнутость поля : пусть ; тогда (без доказательства). Лемма о вещественных многочленах.

    Лемма о вещественных многочленах. Пусть , и ; тогда .

1.3.4  Тело кватернионов
  • Кольцо кватернионов: , где , а также , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
  • Лемма об умножении кватернионов. Сопряжение: . Утверждение: . Модуль: .

    Лемма об умножении кватернионов. Для любых и выполнено .

  • Теорема о свойствах кватернионов.
    (1) Для любых выполнено и, если , то (и, значит, — тело).
    (2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Трехмерная сфера: . Утверждение: пусть ; тогда и .