Алгебра phys 1 сентябрь–октябрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 96: | Строка 96: | ||
<h5>1.3.2 Кольца многочленов</h5> | <h5>1.3.2 Кольца многочленов</h5> | ||
<ul><li>Одночлены от свободных переменных <math>x_1,\ldots,x_n</math> — слова, принадлежащие моноиду <math>\mathrm W_\otimes(x_1,\ldots,x_n)</math>. Кольцо многочленов <math>R_\otimes[x_1,\ldots,x_n]</math>. | <ul><li>Одночлены от свободных переменных <math>x_1,\ldots,x_n</math> — слова, принадлежащие моноиду <math>\mathrm W_\otimes(x_1,\ldots,x_n)</math>. Кольцо многочленов <math>R_\otimes[x_1,\ldots,x_n]</math>. | ||
− | |||
<li>Кольцо многочленов <math>R[x]</math>. Степень и старший коэфф. многочлена. Лемма о делении многочленов с остатком. Операции <math>\mathrm{div}</math> и <math>\mathrm{mod}</math> для многочленов. | <li>Кольцо многочленов <math>R[x]</math>. Степень и старший коэфф. многочлена. Лемма о делении многочленов с остатком. Операции <math>\mathrm{div}</math> и <math>\mathrm{mod}</math> для многочленов. | ||
<p><u>Лемма о делении многочленов с остатком.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f,g\in R[x]</math> и старший коэффициент многочлена <math>f</math> обратим;<br>тогда существуют единственные такие многочлены <math>q,t\in R[x]</math>, что <math>g=qf+t</math> и <math>\deg t<\deg f</math>.</i></p> | <p><u>Лемма о делении многочленов с остатком.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f,g\in R[x]</math> и старший коэффициент многочлена <math>f</math> обратим;<br>тогда существуют единственные такие многочлены <math>q,t\in R[x]</math>, что <math>g=qf+t</math> и <math>\deg t<\deg f</math>.</i></p> | ||
Строка 135: | Строка 134: | ||
<li>Тригонометрическая форма компл. числа: <math>r\,(\cos\varphi+\sin\varphi\,\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Утверждение: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}</math>. | <li>Тригонометрическая форма компл. числа: <math>r\,(\cos\varphi+\sin\varphi\,\mathrm i)=r\,\mathrm e^{\varphi\,\mathrm i}</math>. Утверждение: <math>\{a\in\mathbb C\mid a^n\!=r\,\mathrm e^{\varphi\,\mathrm i}\}=\{\sqrt[n]r\,\mathrm e^{\frac{\varphi+2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}</math>. | ||
<li>Группа корней <math>n</math>-й степени из <math>1</math>: <math>\{a\in\mathbb C\mid a^n\!=1\}=\{\mathrm e^{\frac{2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle\cong(\mathbb Z/n)^+</math>. Первообразный корень <math>n</math>-й степени из <math>1</math>. | <li>Группа корней <math>n</math>-й степени из <math>1</math>: <math>\{a\in\mathbb C\mid a^n\!=1\}=\{\mathrm e^{\frac{2\pi k}n\mathrm i}\!\mid k\in\{0,\ldots,n-1\}\}=\langle\mathrm e^{\frac{2\pi}n\mathrm i}\rangle\cong(\mathbb Z/n)^+</math>. Первообразный корень <math>n</math>-й степени из <math>1</math>. | ||
− | <li>Алгебраическая замкнутость поля <math>\mathbb C</math>: <i>пусть <math>f\in\mathbb C[x] | + | <li>Алгебраическая замкнутость поля <math>\mathbb C</math>: <i>пусть <math>f\in\mathbb C[x]\setminus\mathbb C</math>; тогда <math>\exists\,a\in\mathbb C\;\bigl(f(a)=0\bigr)</math></i> (без доказательства). Корни вещественных многочленов.</ul> |
<h5>1.3.4 Тело кватернионов</h5> | <h5>1.3.4 Тело кватернионов</h5> |
Версия 23:30, 12 октября 2016
1 Основы алгебры
| ||||||||||
| ||||||||||
|
1.1 Множества, отображения, отношения
1.1.1 Множества
- Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
- Лемма о логических связках. Пусть , , — высказывания; тогда
(1) , , , ;
(2) , ;
(3) , , , . - Кванторы: — существование, — всеобщность («для любых»). Утверждение: , .
- Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
- Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
- Лемма об операциях над множествами. Пусть , , — множества; тогда
(1) , , , ;
(2) , ;
(3) если — множество и , то и . - Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
- — порядок (количество элементов) множества , — множество подмножеств множества , — -я степень множества ().
1.1.2 Отображения
- Множество отображений, действующих из мн.-ва в мн.-во : . Область, кообласть, график отображения : , , .
- Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
- Сужения отображения ( и ): и . Сокращенная запись образа: .
- Инъекции: . Сюръекции: .
- Биекции: . Композиция отображений: . Тождественное отображение: .
- Теорема о композиции отображений. Пусть , — множества и ; тогда
(1) , и, если , — множества, и , то ;
(2) если , то , если и только если ;
(3) , если и только если ;
(4) , если и только если ( — биекция, обратная к биекции ). - Утверждение: . Принцип Дирихле. Пусть — множества, ; тогда .
1.1.3 Отношения
- Множество отношений между множествами и : . Область, кообласть, график отношения : , , . Примеры.
- Отношения эквивалентности: .
- Класс эквивалентности: . Утверждение: . Фактормножество: .
- Разбиения: . Утверждение: . Трансверсали.
- Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
- Отношение : . Слои отображения : (). Факторотображение — биекция.
1.2 Группы (часть 1)
1.2.1 Множества с операцией
- Внутренняя -арная операция на — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
- Гомоморфизмы между мн.-вами с операцией: .
- Утверждение: пусть и ; тогда . Изоморфизмы: .
- Утверждение: пусть ; тогда . Эндоморфизмы: . Автоморфизмы: .
- Обозначение по Минковскому: . Примеры: , , .
- Инфиксная запись бинарных операций. Ассоциативность: . Коммутативность: .
- Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).
1.2.2 Моноиды и группы (основные определения и примеры)
- Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
- Примеры: числовые моноиды (включая моноиды остатков), моноиды функций, моноиды слов , моноиды отображений .
- Обратимые элементы: . Единственность обратного элемента. Утверждение: .
- Неприводимые элементы: . Пример: . Делимость и ассоциированность в коммут. моноиде.
- Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
- Примеры: числовые группы, группы функций, свободные группы , группы биекций , группы автоморфизмов графов .
- Мультипликативные обозначения в группе : , , , (). Аддитивные обозначения в абелевой группе : , , , ().
- Симметрические группы: , . Запись перестановки в виде посл.-сти значений, цикловая запись. Лемма о циклах.
Лемма о циклах. Пусть , , числа попарно различны и ; тогда
, а также .
1.2.3 Подгруппы, классы смежности, циклические группы
- Подгруппа: . Подгруппа, порожденная мн.-вом : .
- Утверждение: , а также . Пример: .
- Отношения и : и . Утверждение: и .
- Множества классов смежности: и . Теорема Лагранжа. Индекс: .
Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).
- Порядок элемента: (). Утверждение: пусть ; тогда .
- Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
- Лемма об обратимых остатках. Пусть и ; тогда .
- Циклическая группа: . Примеры: (), . Теорема о циклических группах. Первообразный корень по модулю .
Теорема о циклических группах. Пусть — циклич. группа; обозначим через величину ; тогда и или и .
1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп
- Нормальная подгруппа: . Пример: .
- Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
- Нормальная подгруппа, порожденная мн.-вом : . Утверждение: . Примеры.
- Ядро гомоморфизма : . Образ гомоморфизма : . Лемма о слоях гомоморфизма и следствие из этой леммы.
Лемма о слоях гомоморфизма. Пусть — группы, , и ; тогда .
Следствие из леммы о слоях гомоморфизма. Пусть — группы и ; тогда .
- Факторгруппа: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — группы и ; тогда .
- Прямое произведение групп: с покомпонентными операциями. Утверждение: . Теорема о прямом произведении.
Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то .
1.3 Кольца (часть 1)
1.3.1 Определения и конструкции, связанные с кольцами
- Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
- Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
- Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
- Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
- Ядро гомоморфизма : . Образ гомоморфизма : . Лемма о слоях гомоморфизма и следствие из этой леммы.
Лемма о слоях гомоморфизма. Пусть — кольца, , и ; тогда .
Следствие из леммы о слоях гомоморфизма. Пусть — кольца и ; тогда .
- Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.
Теорема о гомоморфизме. Пусть — кольца и ; тогда .
- Кольца без делителей нуля. Область целостности — коммутативное кольцо без делителей нуля. Тело: . Поле — коммутативное тело.
- Гомоморфизмы полей. Числовые поля. Конечные поля: (). Подполя. Подполе, порожденное множеством. Поля вида .
1.3.2 Кольца многочленов
- Одночлены от свободных переменных — слова, принадлежащие моноиду . Кольцо многочленов .
- Кольцо многочленов . Степень и старший коэфф. многочлена. Лемма о делении многочленов с остатком. Операции и для многочленов.
Лемма о делении многочленов с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим;
тогда существуют единственные такие многочлены , что и . - Сопоставление многочлену полиномиальной функции — гомоморфизм колец ( — коммут. кольцо).
- Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.
Теорема Безу. Пусть — коммутативное кольцо, , и ; тогда .
Теорема о корнях многочлена. Пусть — область целостности и ; тогда .
Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .
- Деление с остатком в кольце . Кольцо остатков: (). Утверждение: .
- Сводная таблица об элементарных понятиях теории коммутативных колец (с примерами для колец и , где — поле).
Понятие в коммутативном кольце | Понятие в кольце | Понятие в кольце , где — поле |
---|---|---|
Обратимые элементы кольца : |
Обратимые целые числа: |
Обратимые многочлены над : |
Неприводимые элементы кольца : |
Неприводимые целые числа: |
Неприводимые многочлены над : |
Делимость в кольце (): |
Делимость в кольце (): |
Делимость в кольце (): |
Строгая делимость в кольце (): |
Строгая делимость в кольце (): |
Строгая делимость в кольце (): |
Ассоциированность в кольце (): ; если — область целостности, то |
Ассоциированность в кольце (): |
Ассоциированность в кольце (): |
Факторкольцо кольца по идеалу, порожденному элементом : |
Факторкольцо кольца по идеалу, порожденному натуральным числом : |
Факторкольцо кольца по идеалу, порожденному ненулевым многочленом над : |
1.3.3 Поле комплексных чисел
- Кольцо комплексных чисел: , где . Комплексные числа как точки плоскости . Утверждение: .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Единичная окружность: . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
(2) Для любых выполнено (и, значит, ). - Тригонометрическая форма компл. числа: . Утверждение: .
- Группа корней -й степени из : . Первообразный корень -й степени из .
- Алгебраическая замкнутость поля : пусть ; тогда (без доказательства). Корни вещественных многочленов.
1.3.4 Тело кватернионов
- Кольцо кватернионов: , где и , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Чистые кватернионы: . Скалярное произвед.-е в : , . Векторное произвед.-е в : .
- Лемма об умножении кватернионов. Сопряжение: . Утверждение: . Модуль: .
Лемма об умножении кватернионов. Для любых и выполнено .
- Теорема о свойствах кватернионов.
(1) Для любых выполнено и, если , то (и, значит, — тело).
(2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .