Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
__NOTOC__
 
__NOTOC__
 
<h2>1&nbsp; Векторные пространства</h2>
 
<h2>1&nbsp; Векторные пространства</h2>
<table cellpadding="6" cellspacing="0">
+
<table cellpadding="7" cellspacing="0">
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>
+
<tr><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="0"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все<br>современные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин ''тензор'' имеет тенденцию применяться только к тензорам над обычным физическим 3-мерным пространством<br>или 4-мерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих пространств,<br>хотя принципиальная возможность применения его в более общих случаях остается.</td></tr>
<table border cellpadding="0" cellspacing="0"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все<br>современные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин ''тензор'' имеет тенденцию применяться только к тензорам над обычным физическим 3-мерным пространством<br>или 4-мерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих пространств,<br>хотя принципиальная возможность применения его в более общих случаях остается.</td></tr>
+
<tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии.</i>]</td></tr></table></td></tr>
<tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии.</i>]</td></tr></table>
+
<tr><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="0"><tr><td>(Сказанное выше о тензорах справедливо также по отношению к векторам, ковекторам, полилинейным отображениям... (это частные<br>случаи тензоров) и в целом к очень многим абстрактным (вернее, инвариантным) объектам, изучаемым в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table>
</td></tr>
+
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>
+
<table cellpadding="0" cellspacing="0"><tr><td>(Сказанное выше о тензорах справедливо также по отношению к векторам, ковекторам, полилинейным отображениям... (это частные<br>случаи тензоров) и в целом к многим абстрактным (точнее, инвариантным) объектам, изучаемым в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table>
+
  
 
<h3>1.1&nbsp; Матрицы, базисы, координаты</h3>
 
<h3>1.1&nbsp; Матрицы, базисы, координаты</h3>
Строка 58: Строка 55:
 
<h5>1.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
 
<h5>1.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>; обозначим через<br><math>\mathrm{add}_{U,W}</math> отображение, действующее из <math>U\oplus W</math> в <math>V</math> по правилу <math>(u,w)\mapsto u+w</math> для любых <math>u\in U</math> и <math>w\in W</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math>;<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>.</i></p>
+
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана);<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>.</i></p>
 
<li>Инвариантное подпространство эндоморфизма: <math>a(U)\le U</math>. Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
 
<li>Инвариантное подпространство эндоморфизма: <math>a(U)\le U</math>. Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
 
<li>Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
 
<li>Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
Строка 107: Строка 104:
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}^nV\setminus\{0\}</math>. Корректность определения.
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}^nV\setminus\{0\}</math>. Корректность определения.
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>a\in\mathrm{GL}(V)\,\Leftrightarrow\,\det a\ne0</math> и <math>\det(a\circ b)=\det a\cdot\det b</math>;<br>(2) отображение, действующее из <math>\,\mathrm{GL}(V)</math> в <math>K^\times</math> по правилу <math>\,a\mapsto \det a</math> для любых <math>a\in\mathrm{GL}(V)</math>, — гомоморфизм групп.</i>
+
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>a\in\mathrm{End}(V)</math> выполнено <math>a\in\mathrm{GL}(V)\,\Leftrightarrow\,\det a\ne0</math>;<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\biggr)</math> определено корректно и является гомоморфизмом групп).</i>
 
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math></i>.
 
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math></i>.
 
<li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>.
 
<li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>.
Строка 119: Строка 116:
  
 
<h3>1.5&nbsp; Линейные операторы (продолжение)</h3>
 
<h3>1.5&nbsp; Линейные операторы (продолжение)</h3>
<h5>1.5.1&nbsp; Многочлены и ряды от операторов</h5>
+
<h5>1.5.1&nbsp; Многочлены от операторов</h5>
 +
<ul><li>Многочлен от оператора: <math>f(a)=\sum_{k=0}^{\deg f}f_ka^k</math>. Кольцо, порожденное оператором: <math>K[a]=\{f(a)\mid f\in K[x]\}</math> — коммутативное подкольцо в <math>\mathrm{End}(V)</math>.</ul>
  
<h5>1.5.?&nbsp; Жорданова нормальная форма линейного оператора</h5>
+
<h5>1.5.?&nbsp; Жорданова нормальная форма оператора</h5>
  
 
<h2>2&nbsp; Векторные пространства с билинейной формой</h2>
 
<h2>2&nbsp; Векторные пространства с билинейной формой</h2>

Версия 07:00, 16 марта 2016

1  Векторные пространства

В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)
или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все
современные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.
Вообще в физике термин тензор имеет тенденцию применяться только к тензорам над обычным физическим 3-мерным пространством
или 4-мерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих пространств,
хотя принципиальная возможность применения его в более общих случаях остается.
Статья «Тензор» в русскоязычной Википедии.
(Сказанное выше о тензорах справедливо также по отношению к векторам, ковекторам, полилинейным отображениям... (это частные
случаи тензоров) и в целом к очень многим абстрактным (вернее, инвариантным) объектам, изучаемым в алгебре. — Е.Е. Горячко.)

1.1  Матрицы, базисы, координаты

1.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
1.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ;
    обозначим через отображение ; тогда
    (1) , и ;
    (2) если , то (это формула Грассмана);
    (3) .

  • Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
  • Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
  • Сводная таблица о координатах. (В таблице — поле, — векторное пространство над полем , и .)

Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

1.4  Полилинейные отображения, формы объема, определитель

1.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любого из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений и и полилинейных форм и .
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема , где . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
1.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых выполнено ;
    (2) для любых выполнено
    (и, значит, отображение определено корректно и является гомоморфизмом групп).
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
1.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел
    , что в матрице существует такая подматрица размера , что .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и (в частности, при и при
    выполнено и соответственно);
    (2) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .

1.5  Линейные операторы (продолжение)

1.5.1  Многочлены от операторов
  • Многочлен от оператора: . Кольцо, порожденное оператором: — коммутативное подкольцо в .
1.5.?  Жорданова нормальная форма оператора

2  Векторные пространства с билинейной формой