Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 62: Строка 62:
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <i><math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l</math></i>.
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <i><math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l</math></i>.
 
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>v\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)</math>.</ul>
 
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>v\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)</math>.</ul>
 +
 +
<table border="1" cellspacing="0">
 +
<tr><th>Объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат при замене базиса</th><th>Пример использования в<br>аналитических науках</th></tr>
 +
<tr align=center><td>вектор <math>v\in V</math><br>(тензор типа <math>(1,0)</math> над <math>V</math>)</td>
 +
<td>изоморфизм векторных пространств:<br><math>V\to K^n</math><br><math>v\mapsto v^e</math></td>
 +
<td>матричная запись: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math><br>покомпонентая запись: <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(v^\tilde i=\sum_{k=1}^{\dim V}(e_k)^\tilde i\,v^k\bigr)</math><br>преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math></td>
 +
<td>скорость в точке<br>гладкого пути на многообразии</td></tr>
 +
<tr align=center><td>ковектор <math>\lambda\in V^*</math><br>(тензор типа <math>(0,1)</math> над <math>V</math>)</td>
 +
<td>изоморфизм векторных пространств:<br><math>V^*\to{}^n\!K</math><br><math>\lambda\mapsto\lambda_e</math></td>
 +
<td>матричная запись: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math><br>покомпонентая запись: <math>\forall\,j\in\{1,\ldots,n\}\;\bigl(\lambda_\tilde j=\sum_{l=1}^{\dim V}(e_\tilde j)^l\,\lambda_l\bigr)</math><br>преобразование базиса: <math>\tilde e^*=\mathrm c_e^\tilde e\cdot e^*</math></td>
 +
<td>дифференциал в точке<br>гладкой функции (скалярного поля) на многообразии</td></tr></table>
 +
 +
<math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math>.
 +
 +
<math>a^\tilde i_\tilde j=\sum_{k=1}^{\dim V}\sum_{l=1}^{\dim V}(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.
  
 
<h3>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
 
<h3>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>

Версия 23:40, 27 февраля 2016

1  Векторные пространства

1.1  Матрицы, базисы, координаты

1.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
1.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ; обозначим через
    отображение, действующее из в по правилу для любых и ; тогда
    (1) , и ;
    (2) если , то ;
    (3) .

  • Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
  • Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
ОбъектКоординаты
относительно базиса
Преобразование координат при замене базисаПример использования в
аналитических науках
вектор
(тензор типа над )
изоморфизм векторных пространств:

матричная запись:
покомпонентая запись:
преобразование базиса:
скорость в точке
гладкого пути на многообразии
ковектор
(тензор типа над )
изоморфизм векторных пространств:

матричная запись:
покомпонентая запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля) на многообразии

.

.

1.4  Полилинейные отображения, формы объема, определитель

1.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любого из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений и и полилинейных форм и .
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема , где . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
1.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) отображение, действующее из в по правилу для любых , — гомоморфизм групп.
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
1.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и ;
    (2) и ;
    (3) и, если , то .
  • Формулы Крамера. Пусть — поле, , , и ; тогда .

1.5  Жорданова нормальная форма

2  Векторные пространства с билинейной формой