Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 65: Строка 65:
 
<h3>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
 
<h3>1.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
 
<h5>1.4.1&nbsp; Отступление о симметрических группах</h5>
 
<h5>1.4.1&nbsp; Отступление о симметрических группах</h5>
<ul><li>Симметрические группы: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
+
<ul><li>Симметрическая группа: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
 
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
 
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
 
<li>Транспозиции <math>\{(i\;\,j)\mid i,j\in\{1,\ldots,n\},\,i<j\}</math> и фундаментальные транспозиции <math>\{(i\;\,i+1)\mid i\in\{1,\ldots,n-1\}\}</math>. Число циклов <math>\kappa(u)</math>.
 
<li>Транспозиции <math>\{(i\;\,j)\mid i,j\in\{1,\ldots,n\},\,i<j\}</math> и фундаментальные транспозиции <math>\{(i\;\,i+1)\mid i\in\{1,\ldots,n-1\}\}</math>. Число циклов <math>\kappa(u)</math>.
Строка 76: Строка 76:
 
<li>Пространства симметричных полилин. форм <math>\mathrm{SMulti}^kV</math> и антисимметричных полилин. форм <math>\mathrm{AMulti}^kV</math>. Лемма об антисимметричных формах.
 
<li>Пространства симметричных полилин. форм <math>\mathrm{SMulti}^kV</math> и антисимметричных полилин. форм <math>\mathrm{AMulti}^kV</math>. Лемма об антисимметричных формах.
 
<p><u>Лемма об антисимметричных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>\omega\in\mathrm{Multi}^kV</math>;<br>тогда следующие условия эквивалентны: (1) <math>\omega\in\mathrm{AMulti}^kV</math>;<br>(2) для любых <math>v_1,\ldots,v_k\in V</math> и таких <math>u\in\mathrm S_k</math>, что <math>u</math> — транспозиция, выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=-\omega(v_1,\ldots,v_k)</math>;<br>(3) для любых <math>v_1,\ldots,v_k\in V</math> и <math>u\in\mathrm S_k</math> выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=\mathrm{sgn}(u)\,\omega(v_1,\ldots,v_k)</math>.</i></p>
 
<p><u>Лемма об антисимметричных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>\omega\in\mathrm{Multi}^kV</math>;<br>тогда следующие условия эквивалентны: (1) <math>\omega\in\mathrm{AMulti}^kV</math>;<br>(2) для любых <math>v_1,\ldots,v_k\in V</math> и таких <math>u\in\mathrm S_k</math>, что <math>u</math> — транспозиция, выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=-\omega(v_1,\ldots,v_k)</math>;<br>(3) для любых <math>v_1,\ldots,v_k\in V</math> и <math>u\in\mathrm S_k</math> выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=\mathrm{sgn}(u)\,\omega(v_1,\ldots,v_k)</math>.</i></p>
<li> Пространство форма объема: <math>\mathrm{VF}(V)=\mathrm{AMulti}^nV</math>, где <math>n=\dim V</math>.</ul>
+
<li> Пространство форм объема: <math>\mathrm{VF}(V)=\mathrm{AMulti}^nV</math>, где <math>n=\dim V</math>.</ul>
  
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>

Версия 03:05, 23 февраля 2016

1  Векторные пространства

1.1  Матрицы, базисы, координаты

1.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
1.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ; обозначим через
    отображение, действующее из в по правилу для любых и ; тогда
    (1) , и ;
    (2) если , то ;
    (3) .

  • Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
  • Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .

1.4  Полилинейные отображения, формы объема, определитель

1.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любого из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений и . Пространства полилинейных форм и .
  • Пространства симметричных полилин. форм и антисимметричных полилин. форм . Лемма об антисимметричных формах.

    Лемма об антисимметричных формах. Пусть — поле, , — векторное пространство над полем , и ;
    тогда следующие условия эквивалентны: (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .

  • Пространство форм объема: , где .
1.4.3  Определитель линейного оператора

1.5  Жорданова нормальная форма

2  Векторные пространства с билинейной формой