Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 24: Строка 24:
 
<h5>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<h5>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
<li>Элементарные преобразования над строками первого типа <math>\,a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>\,a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.
<li>Элементарные преобразования над столбцами первого типа <math>\,a\mapsto a\cdot(\mathrm{id}_n+c\,e_l^j)</math> и второго типа <math>\,a\mapsto a\cdot(\mathrm{id}_n+(c-1)e_j^j)</math>.
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,e_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)e_j^j)</math>.
 
<li>Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
 
<li>Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
 
<p><u>Теорема о приведении матрицы к ступенчатому виду.</u> <i>Пусть <math>K</math> — поле, <math>p,n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) существуют такие <math>l\in\mathbb N_0</math> и элементарные матрицы <math>g_1,\ldots,g_l</math> размера <math>p\times p</math> над полем <math>K</math>, что <math>g_l\cdot\ldots\cdot g_1\cdot a</math> — ступенчатая матрица;<br>(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно <math>\dim\,\langle a^1,\ldots,a^p\rangle</math> (и, значит, не зависит от матриц <math>g_1,\ldots,g_l</math>).</i></p>
 
<p><u>Теорема о приведении матрицы к ступенчатому виду.</u> <i>Пусть <math>K</math> — поле, <math>p,n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) существуют такие <math>l\in\mathbb N_0</math> и элементарные матрицы <math>g_1,\ldots,g_l</math> размера <math>p\times p</math> над полем <math>K</math>, что <math>g_l\cdot\ldots\cdot g_1\cdot a</math> — ступенчатая матрица;<br>(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно <math>\dim\,\langle a^1,\ldots,a^p\rangle</math> (и, значит, не зависит от матриц <math>g_1,\ldots,g_l</math>).</i></p>
Строка 52: Строка 52:
 
<h5>1.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
 
<h5>1.3.1&nbsp; Прямая сумма векторных пространств и факторпространства</h5>
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
 
<ul><li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>; обозначим через<br><math>\mathrm{add}_{U,W}</math> отображение, действующее из <math>U\oplus W</math> в <math>V</math> по правилу <math>(u,w)\mapsto u+w</math> для любых <math>u\in U</math> и <math>w\in W</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math>;<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)\,\Leftrightarrow\,\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)\,\Leftrightarrow\,U\cap W=\{0\}\;\land\;U+W=V</math>.</i></p>
+
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>; обозначим через<br><math>\mathrm{add}_{U,W}</math> отображение, действующее из <math>U\oplus W</math> в <math>V</math> по правилу <math>(u,w)\mapsto u+w</math> для любых <math>u\in U</math> и <math>w\in W</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math>;<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>.</i></p>
 
<li>Инвариантное подпространство эндоморфизма: <math>a(U)\le U</math>. Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
 
<li>Инвариантное подпространство эндоморфизма: <math>a(U)\le U</math>. Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
 
<li>Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
 
<li>Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
Строка 66: Строка 66:
 
<h5>1.4.1&nbsp; Отступление о симметрических группах</h5>
 
<h5>1.4.1&nbsp; Отступление о симметрических группах</h5>
 
<ul><li>Симметрические группы: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановки.
 
<ul><li>Симметрические группы: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановки.
<li>Утверждение: <math>(i_1\;\,\ldots\;\,i_l\;\,k)\circ(k\;\,j_1\;\,\ldots\;\,j_m)=(i_1\;\,\ldots\;\,i_l\;\,k\;\,j_1\;\,\ldots\;\,j_m)</math>. Утверждение: <math>u\circ(i_1\;\,\ldots\;\,i_l)\circ u^{-1}=(u(i_1)\;\,\ldots\;\,u(i_l))</math>.
+
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
 
<li>Транспозиции <math>\{(i\;\,j)\mid i,j\in\{1,\ldots,n\},\,i<j\}</math> и фундаментальные транспозиции <math>\{(i\;\,i+1)\mid i\in\{1,\ldots,n-1\}\}</math>. Число циклов <math>\kappa(u)</math>.
 
<li>Транспозиции <math>\{(i\;\,j)\mid i,j\in\{1,\ldots,n\},\,i<j\}</math> и фундаментальные транспозиции <math>\{(i\;\,i+1)\mid i\in\{1,\ldots,n-1\}\}</math>. Число циклов <math>\kappa(u)</math>.
 
<li><u>Лемма об умножении на транспозицию.</u> <i>Пусть <math>n\in\mathbb N\setminus\{1\}</math>, <math>u\in\mathrm S_n</math>, <math>i,j\in\{1,\ldots,n\}</math> и <math>i\ne j</math>; тогда<br>(1) если числа <math>i</math> и <math>j</math> принадлежат одному циклу в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)+1</math>;<br>(2) если числа <math>i</math> и <math>j</math> принадлежат разным циклам в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)-1</math>.</i>
 
<li><u>Лемма об умножении на транспозицию.</u> <i>Пусть <math>n\in\mathbb N\setminus\{1\}</math>, <math>u\in\mathrm S_n</math>, <math>i,j\in\{1,\ldots,n\}</math> и <math>i\ne j</math>; тогда<br>(1) если числа <math>i</math> и <math>j</math> принадлежат одному циклу в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)+1</math>;<br>(2) если числа <math>i</math> и <math>j</math> принадлежат разным циклам в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)-1</math>.</i>
Строка 73: Строка 73:
  
 
<h5>1.4.2&nbsp; Пространства полилинейных отображений</h5>
 
<h5>1.4.2&nbsp; Пространства полилинейных отображений</h5>
 +
<ul><li>Пространство полилинейных отображений <math>\mathrm{Multi}(V_1,\ldots,V_k;Y)</math>.</ul>
  
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>

Версия 20:45, 22 февраля 2016

1  Векторные пространства

1.1  Матрицы, базисы, координаты

1.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда .
1.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ; обозначим через
    отображение, действующее из в по правилу для любых и ; тогда
    (1) , и ;
    (2) если , то ;
    (3) .

  • Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
  • Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .

1.4  Полилинейные отображения и определитель

1.4.1  Отступление о симметрических группах
  • Симметрические группы: . Запись перестановки в виде последовательности значений. Цикловая запись перестановки.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любого из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2  Пространства полилинейных отображений
  • Пространство полилинейных отображений .
1.4.3  Определитель линейного оператора

1.5  Жорданова нормальная форма

2  Векторные пространства с билинейной формой