Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<h3>1.1&nbsp; Матрицы, базисы, координаты</h3>
 
<h3>1.1&nbsp; Матрицы, базисы, координаты</h3>
  
<h4>1.1.1&nbsp; Матрицы, столбцы, строки</h4>
+
<h5>1.1.1&nbsp; Матрицы, столбцы, строки</h5>
 
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.</li>
 
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.</li>
 
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.</li>
 
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.</li>
Строка 12: Строка 12:
 
<li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: отображение <math>a\mapsto a^\mathtt T</math> — антиавтоморфизм кольца <math>\mathrm{Mat}(n,K)</math>.</li></ul>
 
<li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: отображение <math>a\mapsto a^\mathtt T</math> — антиавтоморфизм кольца <math>\mathrm{Mat}(n,K)</math>.</li></ul>
  
<h4>1.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов</h4>
+
<h5>1.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов</h5>
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств между <math>V</math> и <math>K^{\dim V}</math>.</li>
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств между <math>V</math> и <math>K^{\dim V}</math>.</li>
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <math>a(e)=h\cdot a_e^h\,</math> и <math>\,\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.</li>
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <math>a(e)=h\cdot a_e^h\,</math> и <math>\,\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.</li>
 
<li>Изоморфизм векторных пространств между <math>\mathrm{Hom}(V,Y)</math> и <math>\mathrm{Mat}(\dim Y,\dim V,K)</math>. Изоморфизм колец между <math>\mathrm{End}(V)</math> и <math>\mathrm{Mat}(\dim V,K)</math>.</li></ul>
 
<li>Изоморфизм векторных пространств между <math>\mathrm{Hom}(V,Y)</math> и <math>\mathrm{Mat}(\dim Y,\dim V,K)</math>. Изоморфизм колец между <math>\mathrm{End}(V)</math> и <math>\mathrm{Mat}(\dim V,K)</math>.</li></ul>
  
<h4>1.1.3&nbsp; Преобразования координат при замене базиса</h4>
+
<h5>1.1.3&nbsp; Преобразования координат при замене базиса</h5>
 
<ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e\,</math> и <math>\,\mathrm c_e^\tilde e=\bigl(\mathrm c_\tilde e^e\bigr)^{-1}</math>.</li>
 
<ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e\,</math> и <math>\,\mathrm c_e^\tilde e=\bigl(\mathrm c_\tilde e^e\bigr)^{-1}</math>.</li>
 
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^{\dim V}(e_k)^\tilde i\,v^k</math>.</li>
 
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^{\dim V}(e_k)^\tilde i\,v^k</math>.</li>
 
<li>Преобразование координат эндоморфизма: <math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись: <math>a^\tilde i_\tilde j=\sum_{k=1}^{\dim V}\sum_{l=1}^{\dim V}(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</li></ul>
 
<li>Преобразование координат эндоморфизма: <math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись: <math>a^\tilde i_\tilde j=\sum_{k=1}^{\dim V}\sum_{l=1}^{\dim V}(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</li></ul>
  
<h4>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h4>
+
<h5>1.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.</li>
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.</li>
 
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.</li>
 
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.</li>
Строка 32: Строка 32:
 
<h3>1.2&nbsp; Линейные операторы</h3>
 
<h3>1.2&nbsp; Линейные операторы</h3>
  
<h4>1.2.?&nbsp; Ядро и образ линейного оператора</h4>
+
<h5>1.2.?&nbsp; Ядро и образ линейного оператора</h5>
  
<h4>1.2.?&nbsp; Ранг линейного оператора</h4>
+
<h5>1.2.?&nbsp; Ранг линейного оператора</h5>
<ul><li>Определение ранга: <math>\mathrm{rk}(a)=\dim\mathrm{Im}\,a</math>. Матричное определение ранга: <math>\mathrm{rk}(a)=\dim\,\langle a_1,\ldots,a_n\rangle</math>.</li></ul>
+
<ul><li>Определение ранга оператора: <math>\mathrm{rk}(a)=\dim\mathrm{Im}\,a</math>. Определение ранга матрицы: <math>\mathrm{rk}(a)=\dim\,\langle a_1,\ldots,a_n\rangle</math>. Утверждение: <math>\mathrm{rk}(a)=\mathrm{rk}(a_e^h)</math>.</li></ul>
  
<h4>1.2.?&nbsp; Решение систем линейных уравнений</h4>
+
<h5>1.2.?&nbsp; Решение систем линейных уравнений</h5>
 
<ul><li>Метод Гаусса решения систем линейных уравнений. Главные и свободные переменные. Фундаментальная система решений.</li></ul>
 
<ul><li>Метод Гаусса решения систем линейных уравнений. Главные и свободные переменные. Фундаментальная система решений.</li></ul>
  
 
<h3>1.3&nbsp; Конструкции над векторными пространствами</h3>
 
<h3>1.3&nbsp; Конструкции над векторными пространствами</h3>
  
<h4>1.3.1&nbsp; Прямая сумма векторных пространств</h4>
+
<h5>1.3.1&nbsp; Прямая сумма векторных пространств</h5>
  
<h4>1.3.2&nbsp; Факторпространство</h4>
+
<h5>1.3.2&nbsp; Факторпространство</h5>
  
<h4>1.3.3&nbsp; Двойственное пространство</h4>
+
<h5>1.3.3&nbsp; Двойственное пространство</h5>
  
 
<h3>1.4&nbsp; Полилинейные отображения и определитель</h3>
 
<h3>1.4&nbsp; Полилинейные отображения и определитель</h3>

Версия 23:35, 13 февраля 2016

1  Векторные пространства и линейные операторы

1.1  Матрицы, базисы, координаты

1.1.1  Матрицы, столбцы, строки
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
  • Теорема. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, с помощью теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.?  Ядро и образ линейного оператора
1.2.?  Ранг линейного оператора
  • Определение ранга оператора: . Определение ранга матрицы: . Утверждение: .
1.2.?  Решение систем линейных уравнений
  • Метод Гаусса решения систем линейных уравнений. Главные и свободные переменные. Фундаментальная система решений.

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств
1.3.2  Факторпространство
1.3.3  Двойственное пространство

1.4  Полилинейные отображения и определитель